Acercaremos el cosmos a los ojos de millones de personas

Astrobloguers

Blog de los aficionados a la Astronomía
Astrobloguers » Entradas bajo la etiqueta estrellas

Visita al Observatorio Real de Bélgica

El Observatorio Real de Bélgica (ROB) fue creado en 1826 siendo su primer director Adolphe Quetelet (1796-1874). Inicialmente se encontraba en el centro de Bruselas, pero en 1876 a la vez que se nombró como sucesor del primer director a Houzeau se realizó el traslado del Observatorio de su lugar original de Saint-Josse-ten-Noode a donde se encuentra ahora, en las afueras de Bruselas, junto con el Instituto Real de Meteorología y el Instituto de Aerodinámica Espacial de Bélgica.

En el Observatorio, además de realizarse una labor investigadora de vanguardia (en colaboración con grandes observatorios internacionales como el Observatorio Europeo del Sur, ESO) también están al frente de la labor divulgadora tanto desde el Planetario de la ciudad de Bruselas como con las visitas guiadas que el público puede realizar al Observatorio. Multitud de eventos son organizados desde el ROB con el fin de exponer a la gente los avances de la astronomía: observaciones con algunos de los telescopios del ROB, eventos especiales como el tránsito de Venus de 2004, cursos y seminarios de divulgación científica, etc…

Nosotros contactamos con el ROB a través de su página web, http://www.astro.oma.be/ . Aprovechando nuestras vacaciones en Bélgica en septiembre de 2004, decidimos intentar concertar una visita en el ROB y gracias al astrónomo Dr. Jan Cuypers pudimos conseguir una cita. Muy amablemente Jan nos guió en una visita privada por todos los departamentos del ROB. Desde los distintos observatorios hasta el museo, las páginas de la historia se veían reflejadas por todos sus pasillos. Desde aquí nuestro agradecimiento a Jan por el tiempo tan valioso que nos dedicó.

Algunos de los observatorios ubicados en los jardines del Real Observatorio de Bélgica
Algunos de los observatorios ubicados en los jardines del Real Observatorio de Bélgica

Actualmente en el ROB se trabaja en varios campos de la Astrofísica y de la Geofísica, aunque pocos son ya los telescopios que están en uso, entre otras cosas por la contaminación lumínica y también por su tecnología que se ha quedado un poco anticuada. Uno de los telescopios que goza de mejor salud es el solar, pues desde el ROB se observa diariamente el Sol.

LA FÍSICA SOLAR

La física solar es una disciplina en plena expansión en el ROB. Las observaciones de la fotosfera solar se realizan diariamente desde hace 30 años. El Solar Influences Data analysis Center (SIDC) que tiene su sede en el ROB juega un papel importantísimo a nivel europeo y mundial. Además de calcular el Indice de Manchas Solares el SIDC también se encarga de proporcionar el pronóstico del tiempo en el espacio, esta es una nueva ciencia interdisciplinar. La actividad solar, que varía de ciclo en ciclo, puede haber tenido un impacto importante en la evolución climática en la Tierra y el SIDC proporciona pronósticos y advertencias que pueden ayudar a identificar y anticipar las influencias solares.

Nosotros tuvimos la suerte de visitar el departamento de física solar y ver el telescopio con el cual toman las imágenes diarias. Además nos contaron que desde este departamento centralizan los datos del número de Wolf enviados desde todos los países de Europa. El Grupo Astronómico Silos de Zaragoza (GAS) hace algunos años también participó durante un periodo de tiempo bastante largo en estas observaciones. Para nosotros saber que nuestros datos estaban guardados en sus archivos fue todo un orgullo.

Telescopio de observación solar
Telescopio de observación solar

Aunque los cielos de Bruselas tienen bastante contaminación lumínica esto no afecta a la observación solar que se realiza de forma continua en el ROB. De todos modos las observaciones tratan de realizarlas por la mañana que es cuando la atmósfera tiene mayor calidad y la polución todavía no se ha levantado demasiado. Pero desgraciadamente los cielos de esta ciudad están muy frecuentemente cubiertos de nubes. El telescopio que usan es un refractor de 150 mm y una distancia focal de 2400 mm. La montura es ecuatorial y todo está motorizado. Además de recogerse imágenes a través de una CCD, también se hace proyección obteniéndose un circunferencia solar de 25 cm de diámetro y una resolución de 2 segundos de arco, la mejor si tenemos en cuenta la limitación del seeing de la atmósfera.

Como anécdota nos contaron que para calcular la constante de normalización del número de Wolf entre los distintos observadores de los que reciben datos, utilizan como patrón o referencia los datos enviados por un observador casi centenario.

EL TRÁNSITO DE VENUS

Juan-Charles Houzeau siempre fue muy activo en el ámbito de la astronomía y nunca dejó de aportar resultados de sus observaciones y sus investigaciones a la Academia Real de Bélgica. Entre otras cosas viajó a Panamá y Perú para completar su famoso atlas estelar publicado bajo el nombre de Uranometria general. También fue el organizador de las expediciones belgas para la observación del tránsito de Venus de 1882. Él mismo dirigió una observación desde San Antonio (Texas) mientras que el astrónomo Louis Niesten conducía una misión similar en Santiago de Chile.

Houzeau ya propuso la observación del tránsito de Venus con la ayuda de unos heliómetros desde dos lugares distantes para el tránsito de 1874 pero Bélgica en esos momentos no estaba en condiciones de organizar dichas expediciones. Estos proyectos pudieron concretarse para la observación del tránsito siguiente en 1882. Bélgica organizó entonces dos expediciones que se dotaron cada una con un heliómetro especialmente construidos para la observación de este fenómeno según los planes del astrónomo belga Louis Niesten por la empresa Grubb de Dublín.

El heliómetro

Un heliometro consiste en un telescopio cuyo objetivo está dividido en dos mitades por su diámetro. Estas dos mitades yuxtapuestas pueden resbalar una sobre la otra. Este instrumento se utiliza generalmente para medidas del diámetro del Sol pero también pueden realizarse otras medidas, como fue el caso de las observaciones del tránsito de Venus. La gran ventaja de este dispositivo era que no se limitaba a un simple cronometraje de los tiempos de principio y final del tránsito, sino que tales medidas podían efectuarse durante toda la duración del fenómeno. Así finalmente se obtenía una medida precisa de la duración del trayecto de Venus sobre la totalidad del disco solar. Cuando se podían comparar estas medidas con otras medidas similares efectuadas desde otro lugar de la Tierra, se podía calcular en primer lugar el paralaje, y deducir a continuación un valor de la distancia Tierra-Sol. Este último constituía el objetivo principal de las expediciones organizadas en distintos puntos del mundo para la observación del tránsito de Venus.

Uno de los dos heliómetros se transformó en un instrumento fotográfico y se le perdió la pista. El objetivo del otro se guardó en un antiguo museo y se encontraron algunas partes de este heliómetro en los sótanos del Observatorio. Los objetivos se conservaron juntos en el museo y también la pantalla de proyección. Sin embargo no se encontraron los montajes que garantizaban la conexión entre el pie del instrumento y el tubo del telescopio y permitían el seguimiento del Sol sobre el cielo durante la duración de la observación.

Lente y pantalla del heliómetro

Lente y pantalla del heliómetro

Este pasado tránsito de Venus también fue observado con el único heliómetro que aún se conserva. En esta ocasión no se organizó ninguna expedición al nuevo mundo, pero ello no impidió que el viejo heliómetro trabajase a pleno rendimiento más de un siglo después.

Tubo y montura azimutal del heliómetro

Tubo y montura azimutal del heliómetro

ALGUNOS TRABAJOS DESARROLLADOS EN EL ROB

El Dr. Jan Cuypers trabaja dentro del ROB en el departamento de Astrofísica, más concretamente en la sección donde se estudia la dinámica y composición de estrellas cercanas. Su herramienta de estudio es fundamentalmente la Asterosismología, rama de la Astronomía que estudia el interior de las estrellas pulsantes, ya que la interpretación del espectro de frecuencias de vibración de estas estrellas da información de cómo es dicho interior.

Cuypers ha realizado multitud de estudios sobre estrellas. Quizás habría que destacar su investigación en estrellas tipo B y estrellas Beta Cephei. Las primeras se caracterizan por ser muy masivas, entre 3 y 30 masas solares, y por morir transformándose en supernovas, lo que hace interesante estudiar su composición química. Las Beta Cephei son estrellas que están abandonando la secuencia principal sufriendo una lenta expansión lo que conlleva variaciones de brillo y del periodo de pulsación que resultan muy interesantes para completar las teorías de evolución estelar. En general sus estudios se han basado en la detección y análisis del periodo de estrellas variables usando espectroscopia y datos fotométricos, incluyendo las observaciones realizadas por el satélite Hipparcos.

Creemos interesante comentar que en el ROB también se llevan varios temas de investigación en los que los astrónomos amateur tienen una participación muy importante. En gran cantidad de casos las magnitudes de las estrellas que se observan son alcanzables por los telescopios no profesionales, de modo que es posible contribuir haciendo fotometría en varios de los programas que desarrollan astrónomos del ROB. Un ejemplo claro es el de las estrellas variables tipo Delta Scuti. Estas estrellas son pulsantes con una curva de luz que varia de amplitud cíclicamente en el tiempo y donde se observan pulsaciones de distintas frecuencias, radiales y no radiales. La necesidad de observarlas de la manera más continuada posible, para obtener las frecuencias de oscilación de la forma más clara posible, es lo que conduce a que los programas de observación se organicen a nivel internacional de manera que la estrella en estudio esté siendo observada en todo momento por algún observatorio en el mundo. De esta forma se consiguen identificar mejor las frecuencias de oscilación. Un ejemplo de esta colaboración es la efectuada por el astronómo amateur Joaquín Vidal, quien observó desde su Observatorio de Monegrillo (Zaragoza) la estrella V350 Peg. Del estudio que se hizo con los datos fotométricos obtenidos resultó una publicación en Astronomy and Astrophysics (1).

Observación desde el ROB del último tránsito de Venus

Observación desde el ROB del último tránsito de Venus

REFERENCIAS

(1)Vidal-Sainz, J., Wils P., Lampens P., Garcia-Melendo, E., The multiple frequencies of the delta Scuti star V350 Peg, Astronomy and Astrophysics 394, 585 (2002).

Publicado bajo la categoría General, Investigación Amateur, Sol, Turismo Astronómico, Visitas
Etiquetas: , , , , , , , , , ,

La Edad de Oro de los Mapas Estelares

Desde siempre la Humanidad ha intentado plasmar la distribución de los astros en el cielo usando mapas celestes al mismo tiempo que cartografiaba la Tierra. En cierto modo, confeccionar un mapa de los astros es mucho más sencillo que elaborar un mapa terrestre, pues desde cualquier punto de nuestro planeta -a excepción de los polos- se puede observar más de la mitad de la esfera celeste.

La mayoría de los primeros mapas celestes no han sobrevivido hasta la actualidad, salvo contadas excepciones, como es el caso del Atlas de Farnese. Esta escultura se puede considerar el arquetipo grecorromano de representación astronómica de los cielos, pero desgraciadamente la naturaleza efímera del soporte escrito ha evitado que podamos contemplar sus contrapartidas bidimensionales en papiro o pergamino.

Más numerosos son los ejemplares de mapas celestes medievales musulmanes, chinos o europeos, todos ellos, con ligeras modificaciones, basados en la obra de Ptolomeo. Pero no sería hasta el Renacimiento cuando la confección de mapas estelares experimentaría un auge sin precedentes. Las primeras exploraciones marítimas alrededor del mundo propiciaron la cartografía de los astros del hemisferio sur, hasta entonces desconocidos para los europeos. Navegantes como Amerigo Vespucci, Andreas Corsali, Pieter Keyser o Frederick de Houtman serían pioneros en la introducción de las nuevas constelaciones australes. De este modo, las naciones europeas tuvieron acceso por primera vez al cielo del hemisferio sur -que fue debidamente cartografiado-, lo que llevó a la confección de mapas celestes cada vez más detallados. Debido a las necesidades de la navegación, los cartógrafos de la época realizaron esfuerzos considerables para representar de forma fiel la geografía terrestre, desarrollando nuevos métodos matemáticos de proyección y técnicas de grabado que posteriormente serían aplicadas a la hora de crear mapas estelares. Los mapas celestes no eran una mera curiosidad académica: en una época de largas travesías oceánicas, las estrellas ofrecían un método seguro para orientarse en alta mar (al menos en latitud). La introducción del telescopio en el siglo XVII por parte de Galileo abrió nuevas posibilidades a la hora de cartografiar los cielos.
En el periodo comprendido entre 1600 y 1800 la confección de mapas estelares alcanzó un refinamiento tal que podemos considerarla la Época de Oro de la cartografía celeste. Antes de este periodo los mapas eran caóticos, de calidad mediocre o bien poco prácticos. Son muchas las obras que se editaron en este periodo y sería imposible hacer una referencia a todas ellas en esta breve reseña, pero podemos centrarnos en cuatro obras que cambiarían la forma de ver el cielo:

  • Uranometría, de Johann Bayer (1572-1625): Bayer era un filósofo alemán apasionado de la astronomía. Consideraba que no había mapas celestes adecuados para observar los cielos con un mínimo de precisión y como resultado decidió crear uno propio cuyo nombre original sería Uranometria Omnium Asterismorum, conocido popularmente como Uranometría, “medida de los cielos”. Fue publicado originalmente en 1603 en la ciudad alemana de Augsburg. Consistía en en 51 laminas, 48 de ellas dedicadas a las constelaciones clásicas de Ptolomeo, una con las nuevas constelaciones que habían descubierto los navegantes europeos (Nubes de Magallanes incluidas), así como dos planisferios celestes completos. Bayer utilizó una proyección trapezoidal y márgenes calibrados para permitir la lectura de la posición de un astro en el cielo con medio grado de error. Representó las 1005 estrellas del catálogo de Tycho Brahe, así como otras 1000 catalogadas por él mismo. En estos mapas Bayer introdujo la convención de nombrar a las estrellas más brillantes de cada constelación mediante letras griegas (y latinas si se terminaba el alfabeto). Esta tradición se ha mantenido hasta la actualidad, pese a las numerosas inconsistencias del sistema. Conviene recordar que fue Alessandro Piccolomini el primero en designar con letras las estrellas más brillantes de cada constelación en su obra De le Stelle Fisse, aunque a diferencia de Bayer hizo uso del alfabeto latino exclusivamente. La belleza del atlas celeste de Bayer radica en la introducción de figuras mitológicas en cada lámina para ayudar a localización de las estrellas, siguiendo las descripciones “anatómicas” del Almagesto de Ptolomeo.
La Osa Mayor en el Uranometria.

La Osa Mayor en el Uranometria.

  • Firmamentum Sobiescianum, de Johannes Hevelius (1611-1687): Hevelius era un comerciante alemán nacido en Danzig (actualmente Gdansk, Polonia) aficionado a la astronomía que gracias a su desahogada situación económica pudo crear su propio observatorio particular. Este observatorio sería bautizado como Stellaburgum (“ciudad de las estrellas”) y  estaría considerado como uno de los mejores observatorios del mundo hasta la creación a finales del siglo XVII de varias instituciones astronómicas europeas de carácter nacional. Con el apoyo del rey francés Luis XIV y el rey polaco Jan III Sobieski, Hevelius pudo finalizar su obra Prodromus Astronomiae, la cual estaba formada por un catálogo (Catalogus Stellerum Fixarum) y un atlas celeste (Firmamentum Sobiescianum, sive Uranographia) dedicado al rey polaco. El catálogo incluía 1564 estrellas en proyección trapezoidal (sin letras griegas ni latinas), 600 de ellas añadidas por Hevelius, así como 12 nuevas constelaciones de un total de 73. Curiosamente, su obra sería publicada por su segunda mujer, Elisabeth, tras su muerte en 1690. El Firmamentum Sobiescianum es considerado por muchos como el atlas celeste más bello jamás creado. La altísima calidad visual y artística de esta obra se debe a la experiencia que tenía Hevelius a la hora de realizar grabados. Por otra parte, rechazó el uso del por entonces nuevo invento del telescopio para aumentar la precisión de la posición de los astros. Por este motivo, desde el punto de vista técnico su obra no era un gran avance respecto del Uranometria de Bayer. Curiosamente, la representación de las constelaciones estaba “invertida”, es decir, fueron dibujadas como si contemplásemos la esfera celeste “desde fuera”, una práctica muy común en los atlas y cartas celestes de la antigüedad.
La constelación de Taurus en el Uranographia.

La constelación de Tauro en el Uranographia.

  • Atlas Coelestis, de John Flamsteed (1646-1719): a diferencia de Bayer y Hevelius, Flamsteed era un astrónomo profesional, encargado de la construcción del Real Observatorio de Greenwich y a la sazón primer Royal Astronomer. Fue el primero en registrar de forma sistemática las posiciones de las estrellas usando un telescopio, tarea a la que dedicó toda su vida. Al igual que en el caso de Hevelius, su obra fue publicada postumamente por su mujer en 1725 y se denominó Historiae Coelestis Britannicae, con más de 3000 estrellas. Hizo uso de las letras de Bayer, aunque añadió números para designar las estrellas de cada constelación. Estos números son actualmente conocidos como “Números de Flamsteed”, pese a que fueron introducidos por el francés Joseph Lalande en 1783. Basado en este catálogo, en 1729 se publicó el Atlas Coelestis, el resultado de toda una vida de trabajo. Atlas Coelestis usaba una proyección polar estereográfica que, combinada con la precisión del catálogo estelar de Flamsteed, hizo de él una auténtica joya científica y artística en su época. Una joya que tardaría más de medio siglo en ser superada.
Ofiuco en el Atlas Coelestis.

Ofiuco en el Atlas Coelestis.

  • Uranographia, de Johann Bode (1747-1826): Bode fue un reputado astrónomo alemán de Hamburgo que llegó a ser director del Observatorio de Berlín. Desde su juventud, Bode se propuso superar el altísimo listón alcanzado por Flamsteed a la hora de confeccionar catálogos estelares. En su primera etapa publicó dos libros con mapas celestes:  Anleitung zur Kentnis des Gestirnten Himmels (“introducción al conocimiento del cielo estrellado”) en 1768 y  Vorstellung der Gestirne (“presentación de los astros”) en 1782 , una versión alemana del atlas de Flamsteed con más de 3500 estrellas. Pero sería en 1801 cuando finalmente vería la luz su gran obra: Uranographia sive Astrorum Descriptio (o simplemente, Uranographia). Se trataba el atlas celeste más grande jamás publicado. Hacía uso de la proyección cónica, con menos distorsión que los anteriores mapas, para representar más de 100 constelaciones (comparadas con las 88 existentes en la actualidad). Muchas de estas constelaciones fueron creadas por el propio Bode y con el tiempo cayeron en desuso. Uranographia se publicó conjuntamente con un catálogo de 17240 estrellas, llamado Allgemeine Nachweisung der Gestirne que contenía todas las estrellas visibles hasta magnitud 8 algo inaudito para la época.
Acuario en el Uranographia.

Acuario en el Uranographia.

La obra de Bayer, Hevelius, Flamsteed y Bode inspiró a decenas de artistas y científicos que realizaron sus respectivos atlas celestes. Sin embargo, en el sigo XIX esta curiosa disciplina mezcla de arte y ciencia a partes iguales caería en desuso: la introducción de la fotografía haría superfluo el uso de cartas celestes para marcar la posición de las estrellas con alta precisión. Aunque se han seguido publicando mapas celestes hasta la actualidad (como es el caso del Uranometria 2000.0 o el Sky Atlas), su uso ha quedado limitado en la mayoría de los casos a los astrónomos no profesionales. En todo caso, la componente artística que inspiró a los primeros autores está ausente de los mapas estelares contemporáneos, que presentan una orientación emimentemente práctica. La Edad de Oro de los mapas estelares marcó una época de transición entre la antigua tradición grecorromana y la revolución científica de la sociedad moderna. Su legado es un rico patrimonio cultural y científico que no debemos olvidar.

Publicado bajo la categoría General
Etiquetas: , , ,

El origen de nuestros átomos

Evolución del UniversoSi a cualquiera de nosotros nos preguntan de dónde salieron todos los átomos que hay presentes en el universo, seguro que lo primero que se nos ocurre es que tienen su origen en el Big Bang. Bueno, eso hasta cierto punto puede ser correcto, ya que en el modelo cosmológico actual es la explicación que tenemos para el inicio de todo el universo que conocemos. Sin embargo, no nacieron todos los elementos químicos en aquella “megaexplosión”; ni muchísimo menos. Vamos a ver qué ocurrió y cómo surgieron realmente nuestros átomos.

En los primeros instantes de vida del universo ni siquiera existían los más conocidos constituyentes de los átomos, tales como protones o electrones, sino que todo estaba formado por un plasma conocido como plasma de quarks-gluones. Poco a poco, y tras diferentes procesos físicos, fueron apareciendo los protones y neutrones, constituyentes básicos de los núcleos atómicos. Transcurridos unos 300.000 años aparecen ya los primeros átomos ya que con la disminución de la temperatura los núcleos atómicos pueden comenzar a captar electrones. Es a partir de entonces cuando se puede decir que nuestros átomos comienzan su andadura. Todo este proceso recibe el nombre de nucleosíntesis primordial.

Sin embargo apenas aparecen un par de tipos diferentes de átomos: diferentes isótopos de hidrógeno, de helio y el más “pesado” litio. Con estos tres elementos se formaron las primeras estrellas de nuestro joven universo. Ahora bien, ¿de dónde salieron el resto de elementos químicos? La respuesta es sencilla: de los procesos nucleares que tienen lugar en el interior de las estrellas en un proceso llamado nucleosíntesis estelar.

Nacimiento y vida de la estrella

A grandes rasgos y sin entrar en el tema de cómo se forman las estrellas, cualquier estrella empieza su vida siendo una gran bola supercaliente compuesta principalmente de hidrógeno. Debido a las reacciones de fusión termonuclear, dos átomos de hidrógeno (un protón) se combinan para dar lugar a uno de helio (dos protones). Este proceso genera una cantidad descomunal de energía que proporciona a la estrella combustible suficiente para sobrevivir durante un periodo comprendido entre millones de años (estrellas más grandes) y miles de millones de años (estrellas más pequeñas). Esta fase de la evolución estelar recibe el nombre de secuencia principal y ocupa un 90% del total de la vida de la estrella. Nuestro Sol, que es una estrella de las pequeñas, tiene actualmente unos 4.500 millones de años y está todavía en la mitad de su vida, así que tiene combustible para otro periodo de tiempo similar al que lleva vivido.

Pero todo en la vida se acaba, y llegado el momento, el hidrógeno comienza a escasear. Es entonces cuando el combustible de la estrella pasa a ser el helio (dos protones), que al combinarse da lugar al berilio (cuatro protones). Una vez que se acaba el helio se utiliza el berilio, y así sucesivamente. Contado de esta manera parece que todo es muy sencillo y que tan solo hay un tipo de reacción, pero esto no es así. Existen muchas reacciones diferentes englobadas en tres grupos: cadenas protón-protón, el ciclo CNO y el proceso triple-alfa. De esta forma se crean los elementos más ligeros de la tabla periódica.

Cadena PP

Decadencia de la estrella

Una vez superada la etapa de secuencia principal, la estrella empieza con su decadencia. Esta etapa cambia mucho en función de la masa de la estrella, pero como nuestro objetivo es estudiar cómo surgen los elementos químicos, vamos a centrarnos únicamente en lo que ocurre en estrellas de más de 9 veces la masa de nuestro Sol. En estas estrellas, además de los procesos comentados antes de la quema de hidrógeno y de helio, se da también la quema de metales.

Estrella antes del decaimientoUna vez que el combustible básico se ha quemado se comienzan a utilizar metales (se incluyen también semimetales y gases nobles) para mantener la estrella activa. A medida que se queman metales más pesados la estrella se comprime y se aumenta la temperatura para facilitar los procesos de fusión. Se llevan a cabo cuatro procesos fundamentales en esta etapa: la quema del carbono (seis protones), del oxígeno (ocho protones), del neón (diez protones) y del silicio (catorce protones). En estos cuatro procesos se obtiene una amplia variedad de elementos químicos diferentes llegando finalmente hasta el hierro (26 protones) y el níquel (28 protones).

A lo largo de estos procesos la estrella ha ido diferenciándose por capas, como si fuera una cebolla, en la que los diferentes elementos químicos se han ido depositando en una capa determinada. En el centro de la estrella están los elementos más pesados como el hierro y el níquel.

En todas las transformaciones anteriores siempre hay una ganancia de energía, ya que la energía producida en la fusión es mayor que la energía necesaria para unir los átomos. El punto máximo es el del hierro, por lo que a partir de este metal, la energía obtenida es menor que la suministrada. Esto provoca que la estrella entre en decaimiento, lo que la lleva irremediablemente al fin de sus días.

Nucleosíntesis estelar

Muerte de la estrella

El producto final tras la muerte de la estrella también depende de su masa. En nuestro caso particular de una estrella con una masa mayor de 9 veces la del Sol hay diferentes posibilidades. El más común es que la estrella termine sus días explotando en una supernova y convirtiéndose en una estrella de neutrones. ¿Cómo sucede eso?

Como vimos un poco más arriba, una vez superado el pico del hierro la estrella entra en decaimiento. Esto implica que la energía de las reacciones termonucleares no es suficiente para mantener la estrella unida y ésta se vuelve inestable. ¿Y por qué se vuelve inestable? Pues por un motivo muy sencillo. La condición que ha de cumplir una estrella para mantenerse estable es que la fuerza de la gravedad que la empuja a contraerse se compense con la energía de las reacciones termonucleares que la empujan a expandirse. Como ya os podréis imaginar, una vez que llegamos al punto en el que la energía de las reacciones nucleares es insuficiente para compensar la gravedad, algo malo debe suceder. Y así es. Las capas más exteriores de la estrella colapsan sobre sí mismas cayendo hacia el núcleo de la estrella, lo que recibe el original nombre de colapso gravitatorio.

Tras este colapso, las pesadas capas internas de la estrella, sufren un aumento de presión y temperatura. Esto produce que sigan dándose reacciones de fusión mediante procesos de absorción de neutrones o protones, cuyo resultado final son elementos superpesados como el uranio (92 protones). Sin embargo, la estrella no puede soportar esta situación por mucho tiempo y la presión de degeneración de los electrones hace que la estrella explote dando lugar a una supernova. La remanente final será una pequeña y densa estrella de neutrones.

Supernova Kepler

Siembra estelar

Una vez que la estrella colapsa y explota, todo su material sale despedido al espacio. Gracias a esto, todos los elementos químicos que la estrella poseía se esparcen por el universo dando lugar a los elementos químicos que hoy conocemos. Esta es la mejor demostración de que nuestro Sol no es la primera estrella que vivió en esta zona del universo donde nos encontramos actualmente. Para que en la Tierra estén presentes elementos químicos superpesados como el uranio, en esta zona debió de existir una estrella mucho más masiva que el Sol que hace muchos miles de millones de años explotó como una supernova y sembró nuestro Sistema Solar con los elementos químicos que tenemos en nuestro planeta. Visto de otra manera, sembró los elementos químicos que hoy en día necesitamos para vivir.

Saludos 😉

Publicado bajo la categoría Cosmología
Etiquetas: , , , , , , , ,

Distancia sideral

El mes pasado os hablaba sobre la magnitud y la distancia de las estrellas. Pues bien, en la entrada de hoy os hablaré de cómo se mide dicha distancia a las estrellas o incluso a otras galaxias. Como ya os imaginaréis no podemos sacar un metro e ir midiendo, de modo que se utilizan sistemas mucho más avanzados y curiosos de medir la distancia que nos separa de dichos cuerpos. Os hablaré de cuatro sistemas diferentes: paralaje, estudio de estrellas Cefeidas, estudio de supernovas Ia y por último el efecto Doppler. Van ordenados de menor a mayor según el cálculo de distancias para los que son utilizados. Comencemos.

Para distancias “cortas” (astronómicamente hablando) tales como distancias a planetas o estrellas cercanas se utiliza la paralaje (sí, aunque suene raro es femenino). Este método ya se conocía desde principios del siglo XIX y consiste en utilizar dos puntos de la órbita de la Tierra alrededor del Sol como si fueran dos ojos. Me explico. Se observa la posición de una estrella por ejemplo en el mes de abril, y posteriormente se observa esa misma estrella en el mes de octubre. Al haber transcurrido 6 meses, la Tierra está situada en puntos opuestos de su órbita alrededor del Sol, lo que permite construir un triángulo entre la estrella y la Tierra que podemos usar para calcular la distancia. La estrella no se ve en el mismo lugar del firmamento ya que no son puntos que estén completamente fijos, sino que se desplazan por la galaxia al igual que lo hace nuestro Sol. Ésto provoca que haya un pequeño ángulo de diferencia que nos sirve para la medición. Así dicho es bastante enrevesado, pero con un dibujo fijo que lo entenderéis mucho mejor:

Paralaje

La p del dibujo es la mitad del ángulo que forma la posición en la que vemos la estrella en abril y en la que la vemos en octubre. Se mide en segundos de arco y se define a partir de una unidad de distancia llamada pársec, que equivale a 206265 UA, o lo que es lo mismo 3,26 años luz. Sabiendo cuánto es un pársec y aplicando simple trigonometría podemos saber fácilmente a qué distancia están los objetos a partir de dos puntos de referencia. Como ya os dije al principio la paralaje es más precisa en distancias “cortas” ya que a grandes distancias la variación en la posición del objeto a medir es demasiado pequeña y es más complicado medir.

Cefeida Eta AquilaeEn el siguiente paso están las Cefeidas. Una estrella cefeida es una estrella variable cuya luminosidad va cambiando con el tiempo de manera regular. Debido a esta variación, aparece una propiedad fundamental en el estudio de las Cefeidas que es su periodo. Éste se mide fácilmente mediante la observación de los máximos en la curva de luz (imagen de la izquierda), y puede ser utilizado para calcular la magnitud absoluta mediante la ley del periodo-luminosidad. Con esta simple relación entre el periodo y la luminosidad podemos calcular la magnitud absoluta; y por tanto podemos hallar la distancia a la que se encuentra sin más que aplicar la relación con la magnitud relativa tal y como vimos en la entrada del mes pasado. Este método es efectivo tan solo para estrellas dentro de nuestra galaxia y galaxias vecinas, pero se consigue gran precisión en el cálculo.

SN 1994aePara estudiar los objetos más allá de nuestra galaxia, es decir otras galaxias o cúmulos de ellas, se utiliza un sistema muy relacionado con las cefeidas pero más preciso: el estudio de las supernovas Ia. Una supernova Ia es un tipo especial de supernova caracterizada por la falta de la línea espectral del Helio y la presencia de la del Silicio. El cálculo de la distancia mediante el estudio de las supernovas tipo Ia es, como ya dije antes, muy parecido al de la Cefeidas. Todas las supernovas Ia conocidas tienen una curva de luz muy similar y con los máximos de emisión con magnitud también muy similar (en la gráfica de la derecha se observa perfectamente la curva de luz característica). Conocido dicho máximo de magnitud absoluta constante podemos acudir de nuevo a la relación con la magnitud relativa y obtener la distancia a la que se encuentran, tal y como hicimos con las Cefeidas. La principal diferencia y ventaja de este estudio frente al anterior es que gracias a la alta luminosidad de las supernovas Ia, se pueden observar fácilmente en cualquier galaxia y puede calcularse la distancia con mayor precisión.

Estas características de periodicidad de las Cefeidas y de luminosidad máxima constante en las curvas de luz de las supernovas Ia nos dan la posibilidad de utilizarlas como medida estándar de distancias, lo que se conoce como candela estándar.

Para terminar, os hablaré del sistema que se utiliza para medir las distancias a galaxias extremadamente lejanas o cúasares. Se trata del efecto Doppler. Este efecto es muy común en la Tierra para las ondas mecánicas, como por ejemplo el sonido. Es el efecto por el cuál escuchas más agudo el sonido de una ambulancia cuando se acerca a ti, y más grave cuando se te aleja. A grandes rasgos, esto se debe a una aglomeración de las ondas sonoras por delante de la ambulancia, provocando así el sonido más agudo (mayor frecuencia); y una disminución de las ondas en la parte de atrás, provocando el sonido grave (menor frecuencia). Sin embargo esto no solo ocurre en la Tierra con el sonido, sino que las ondas electromagnéticas como la luz también sufren el efecto Doppler. Un ejemplo terrestre del uso del efecto Doppler con ondas electromagnéticas es el radar que utiliza la policía para comprobar la velocidad que llevas con tu vehículo.

Si aplicamos esto al espacio, tenemos que observamos unas desviaciones en la longitud de onda de la señal que percibimos del cuerpo que estamos estudiando. Al igual que a la policía le sirve para saber a que velocidad viajas, ésto a los astrónomos y astrofísicos les sirve para saber si dicho cuerpo se está acercando o alejando de nosotros y la velocidad a la que lo hace. Cuando una estrella se acerca a nosotros, vemos como la frecuencia que nos llega es mayor que la emite (al igual que sucede en la ambulancia), y por tanto la longitud de onda es menor que la original. Esto hace que notemos un desplazamiento hacia el azul de la luz que recibimos. El caso contrario es que se aleja de nosotros, y en ese caso notamos que la frecuencia que nos llega es menor que la que emite realmente, por lo que se longitud de onda que vemos es mayor que la original. Esto hace que notemos un desplazamiento hacia el rojo. En el dibujo inferior se entiende mucho mejor.

Corrimiento por efecto Doppler

Ahora os preguntaréis que como se puede saber la velocidad y la distancia a dicha estrella, y la respuesta es muy sencilla. Dependiendo de la variación de la frecuencia se puede saber si la estrella viaja más rápido o más despacio; del mismo modo que el radar sabe si vamos más rápido o más despacio con el coche. Y una vez que conocemos la velocidad, la distancia es muy fácil calcularla gracias a la Ley de Hubble. Esta ley nos dice de forma simplificada que la velocidad es igual a la distancia de la estrella multiplicada por una constante llamada constante de Hubble. Por tanto despejando la distancia ya tenemos lo que buscamos. Este método de medición mediante el efecto Doppler es bastante impreciso, ya que el valor de la constante de Hubble no está perfectamente determinado y además no sabemos si realmente es una constante ya que todo parece indicar que varía en el tiempo. Aún así el efecto Doppler solo funciona para objetos de fuera de nuestra galaxia, lo cual nos limita demasiado.

Como anécdota del efecto Doppler, comentar que los resultados observados al estudiar galaxias lejanas coincide con lo que postula la Teoría del Big Bang: la expansión del universo. Debido a esta expansión acelerada, las galaxias más lejanas deben alejarse más rápido que las más cercanas, y por tanto su corrimiento hacia el rojo debe ser mayor. Efectivamente, este hecho se verifica al estudiar el efecto Doppler que producen estas galaxias lejanas, lo que constituye una buena prueba experimental de la validez de la Teoría del Big Bang.

En resumen. Para objetos cercanos calculamos la distancia a la que se encuentran utilizando la paralaje. Para estrellas alejadas y galaxias vecinas utilizamos el estudio de las Cefeidas. Para galaxias lejanas utilizamos las supernovas Ia. Y para las galaxias extremadamente lejanas y cuásares utilizamos el efecto Doppler. Por orden de precisión en el cálculo tenemos en primer lugar el estudio de las supernovas Ia, en segundo el estudio de las Cefeidas, en tercero la paralaje, y por último tenemos el efecto Doppler como el sistema de medición de distancias menos preciso.

Saludos 😉

Fuente de la curva de luz de la cefeida: Las Doce Mejores estrellas Variables
Fuente de la curva de luz de la supernova: Teacher’s Guide to the Universe by Lindsay M. Clark, MAP Education/Outreach Coordinator

Publicado bajo la categoría Cosmología, General
Etiquetas: , , , , , , ,

El tamaño sí que importa… a veces

SolLejos de lo que suele representar siempre una frase como la que he elegido para el título de esta entrada, esta entrada trata sobre la magnitud de brillo de las estrellas. Todos los que estéis un poco puestos en el mundillo de la astronomía o la astrofísica ya sabréis que para catalogar el brillo de una estrella se usa una escala de magnitudes que en principio iba del 1 al 6, pero que con el tiempo se ha ido incrementando tanto hacia valores mayores que 6 como menores que 1, incluyendo números negativos. Con esta entrada os mostraré qué significan estos valores y qué relación tienen con el tamaño y la distancia de las estrellas estudiadas. Comencemos.

La escala para medir el brillo de las estrellas recibe el nombre de magnitud y fue utilizada por primera vez por un astrónomo de la Antigua Grecia llamado Hiparco de Nicea. Catalogó las estrellas más visibles en el firmamento con la magnitud 1 y las menos visibles con la magnitud 6. Lógicamente, en esa época no tenían instrumentos de medida de la luminosidad de estas estrellas así que esta escala es simplemente una aproximación de lo que el ojo humano podía medir, es decir, es completamente subjetiva.

Fue a mediados del siglo XIX cuando un señor llamado Norman Pogson propuso que la intensidad de una estrella de magnitud uno era 100 veces superior a la intensidad de una estrella de magnitud 6. Esta teoría concordaba con lo que se observaba con los instrumentos de medida, de modo que la intensidad entre cada magnitud se convirtió en la manera científica de catalogar a las estrellas en la escala. Haciendo cálculos que tenéis perfectamente explicados en la Wikipedia, se puede comprobar que al pasar de una magnitud de la escala a otra se aumenta o disminuye la intensidad en un factor de aproximadamente 2,5. A partir de esto, se pudieron catalogar estrellas con magnitud mayor que 6 y con menor que 1, pero siempre manteniendo este factor 2,5 entre cada entero de magnitud.

Para aclarar un poco más las cosas, la magnitud se ha dividido en tres tipos. Simplemente os hago una pequeña descripción, sin entrar en más detalles.

  • La magnitud aparente es la intensidad que nos llega de un objeto. Es la escala que se suele utilizar habitualmente, aunque no es una medida demasiado precisa ya que dependiendo de donde nos encontremos en nuestro universo, este valor va a cambiar. El motivo es que cuanto más cerca estemos de una estrella más magnitud aparente tendrá y viceversa.
  • La magnitud visual es la magnitud de una estrella estimada con el ojo humano. Realmente es el mismo tipo que la anterior, pero la destaco por motivos históricos ya que fue la base de la escala realizada por Hiparco de Nicea.
  • La magnitud absoluta es la magnitud aparente que tendría un objeto si éste estuviera situado a una distancia de 10 pársecs, es decir 32,6 años luz. Esta es la escala más fiable ya que es objetiva, es decir, cualquier objeto puede ser catalogado de una manera más general y se pueden realizar comparaciones.

Magnitudes del Sol

Así pues ya podemos hacer una clasificación de las magnitudes aparentes de los principales objetos de nuestro firmamento. La estrella que nos da la vida, nuestro querido Sol tiene una magnitud de -26,8. Como veis un valor muy elevado en cuando a la intensidad que recibimos de él, lo cual es completamente lógico debido a su proximidad. El otro astro que tenemos más cerca es nuestra Luna, la cual tiene una magnitud que ronda los -12,6 cuando está en fase de Luna llena. Si recordáis el eclipse lunar que tuvo lugar el 21 de febrero del año pasado, la Luna fue eclipsada por la Tierra y su luminosidad, si no tuviéramos en cuenta el brillo de la Tierra, habría bajado hasta un valor de magnitud 10,19, que es aproximadamente la magnitud del tercer asteroide en ser descubierto, cuyo nombre es Juno y está en el cinturón de asteroides. Ahora bien, ¿por qué si tienen la misma magnitud, a Juno no lo vemos y a la Luna sí? Como bien podéis adivinar, es simplemente una cuestión de distancias y tamaños.

arcturus-solSi nos vamos a estrellas grandes como una gigante naranja como en el caso de Arturo, tenemos que posee una gran luminosidad ya que su magnitud es -0,04, pese a encontrarse a 36,7 años luz. Otro caso puede ser la supergigante azul Rigel cuya magnitud es 0,12 y está a la larga distancia de 773 años luz. Pero como extremo de estrellas gigantes está la más grande conocida, VY Canis Majoris, que al estar a 5000 años luz de distancia únicamente tiene una magnitud de brillo 9,5. Y si ahora nos vamos a estrellas pequeñas, tenemos Alpha Centauri A (recordar que el sistema Alpha Centauri es triple) que es ligeramente mayor que el Sol y tiene una magnitud de -0,01 debido a su gran proximidad a la Tierra, unos 4,4 años luz. Aunque la estrella más cercana del sistema Alpha Centauri, la famosa Próxima Centauri, al tratarse de una pequeña enana roja, tiene un brillo de magnitud 11. Y la estrella más brillante de nuestro cielo, Sirius, perteneciente al Can Mayor tiene un brillo de magnitud -1,5 y es casi el doble de grande que nuestro Sol. Es una estrella blanca de secuencia principal que se encuentra a 8,7 años luz.

En resumen. Tal y como podéis comprobar de este último párrafo el tamaño sí que importa en la magnitud aparente de brillo de los astros; pero no siempre, ya que la distancia a la que se encuentre la estrella o cualquier otro astro también es determinante. Hay otros factores que no he tenido en cuenta y que son importantes, como los motivos por los un astro tiene más o menos luminosidad o el tipo de radiación que emiten, pero como primera aproximación lo que os he contando es correcto.

Esto es todo por hoy. El mes que viene hablaremos de cómo medir la distancia a las estrellas que es otro tema muy interesante y que nos sirve de complemento para esta entrada.

Saludos 😉

Alpha Centauri vs Sol

Publicado bajo la categoría Educación Secundaria, Fotografía Astronomica, General, Historia de la astronomía, Instrumentación, Luna, Observatorios de tu provincia, Sol
Etiquetas: , , , , ,
Arriba | Entradas (RSS) | Comentarios (RSS)