Acercaremos el cosmos a los ojos de millones de personas

Astrobloguers

Blog de los aficionados a la Astronomía
Astrobloguers » Entradas bajo la categoría Turismo Astronómico

Un observatorio astronómico para Galicia

Germán Peris Luque.

Observatorio Astronómico de Forcarei (OAF)

 Imagen superior; el observatorio del OAF durante una noche de invierno
 
 Hace cinco  años y por iniciativa de la Asociación Astronómica de Rias Baixas, nacía un proyecto de construcción de un observatorio astronómico semiprofesional en tierras gallegas. Por aquel entonces el observatorio de mayor abertura en Galicia era el de la Universidad de Santiago, con 60 cm de diámetro, pero por desgracia ubicado en el entorno urbano de la preciosa ciudad de Santiago. Sin duda una ubicación buena para la divulgación y para la formación de futuros astrofísicos, pero con limitaciones para la investigación en muchos campos de la astronomía observacional por la proliferación de las luces urbanas.

Después de estudios detallados sobre una ubicación adecuada en los que se debía barajar variables muy diferentes, como prospecciones de la calidad de cielo, lejanía de parques eólicos, accesos, etc…se decidió su ubicación en la localidad de Forcarei (Pontevedra), gracias no sólo a la buena calidad del cielo y su comuncación, si no a la completa colaboración y facilidades mostradas en todo momento por el Concello y su alcalde David Raposeiras. La imagen de la izquierda es el momento de su inauguración el 13 de marzo de 2009.

 

Gracias a diferentes colaboraciones de entidades públicas; Concello de Forcarei, Xunta de Galicia y Ministerio de Agricultura e Unión Europea, hace justo dos años ahora se hacía realidad el proyecto y veía su primera luz un magnifico instrumento; un telescopio de la prestigiosa óptica americana RCOS de 51 centímetros F:8 (en configuración RC) sobre una montura ecuatorial Paramount ME y como detector principal una cámara CCD ST11000 con un tamaño del chip equivalente a un negativo de 35 milímetros  y un tamaño de píxel de 9 micras, lo que da una resolución aproximada de 0,5” por píxel. Para hacernos una idea grafica, con este telescopio y cámara, en configuración a foco primario, podemos casi abarcar la luna llena, y alcanzar detalles con una resolución  inferiores al kilómetro.

El observatorio, plenamente operativo, y actualmente gestionado por la Fundación  Ceo, Ciencia e Cultura (FC3), formada por AstroVigo, Concello de Forcarei y la Universidad de Vigo, tiene dos líneas bien marcadas; una destinada a la investigación en cualquier campo que quede al alcance del instrumento y una segunda y especialmente importante que es la divulgación y formación, destacando en esta última una gran multitud de visitas de estudiantes y público en general.

 

El observatorio además abre sus puertas al público todos los viernes y sábados no festivos entre las 20:30 y 23 horas, atendiendo a personas de lo más diversas que se encuentran atraídas de forma casual por el edificio singular, o que han conocido su existencia por otros vecinos del Concello o por la página Web de la Fundación FC3, a través de la cual es posible la realización de reservas para visitas o la solicitud de tiempos de observación para aficionados y profesionales de cualquier punto de nuestro estado.

 

Recientemente además se ha celebrado en Forcarei una reunión de representantes de las asociaciones astronómicas gallegas (imagen de la izquierda) para hacer llegar el mensaje de que el observatorio está abierto a todo el mundo y especialmente a los aficionados gallegos; no es un ente cerrado y tan sólo hay que pedir adecuadamente tiempos para conseguir observaciones, tanto presenciales como asistidas, es decir realizadas por el operador del observatorio a petición.

 

 

En proceso continuo de mejoras, se abren nuevas perspectivas que incluirán no sólo la adquisición de nuevo instrumental científico y divulgativo, si no la construcción en un futuro muy próximo de un segundo edificio polifuncional que podría contar entre otros de un planetario para la formación de escolares y público en general.

En un futuro próximo está previsto incluso la robotización completa y operación a través de Internet, tras la asignación de tiempos a los observadores solicitantes.

 

 Sorprende que en un clima complicado como el reinante en Galicia, podamos disfrutar de forma sencilla, de un telescopio con una potencia semejante, pero cuando las noches son estrelladas y transparentes queda comprobado la efectividad y espectacularidad de las tomas del cielo….al alcance de todos.

Algunas tomas desde el observatorio de Forcarei por el autor (sin apenas procesar).

Nebulosa del Cangrejo M1 en Tauro

M13 en Hércules.

M42 en Orión (3 tomas RGBx 10 minutos)

M63; La galaxia del girasol en Canes.

M64, Galaxia del Ojo Negro en Coma.

M97. Nebulosa planetaria de la Lechuza en Osa Mayor.

M101. La Galaxia del Molinete en Osa Mayor.

M106. Galaxia en Canes.

**

Publicado bajo la categoría Agrupaciones de tu provincia, Astronomía en Internet, Astronomía en la vida cotidiana, Educación Primaria, Educación Secundaria, Educación Universitaria, Enclaves astronomicos, Fotografía Astronomica, General, Instrumentación, Investigación Amateur, observación, Observatorios de tu provincia, Turismo Astronómico, Visitas

El Space Center de Bremen

Hace unos años realicé un viaje de ocio por Europa Central y planifiqué el recorrido para pasar un par de días en Bremen. En esta ciudad del Norte de Alemania se encontraba en aquellos momentos el centro de ocio espacial más moderno de Europa, el Space Center.

Este centro está situado en una zona industrial en reconversión. Mientras el tranvía nos acercaba allí pudimos observar fábricas viejas y edificios con un aspecto de barrio obrero, rudo, que contrastaban con el centro turístico de la ciudad. El tranvía nos dejó a pie del edificio y la primera impresión fue buena.

http://www.space-center-bremen.de

El precio de la entrada fue de 22 euros por cabeza. Era importante guardar el ticket porque con él accedías a las diferentes atracciones a través de tornos como en el metro. Sin embargo, como buenos españoles, tuvimos que dar la nota y perdimos uno de ellos. Así que empezamos a buscarlo por las papeleras de los pasillos, debajo de las sillas, etc. Dos vigilantes se acercaron y nos preguntaron qué pasaba (en alemán, claro). Lo cierto es que se portaron muy bien y a los pocos minutos teníamos un nuevo ticket sin coste alguno.

Space Center

Space Center

El Space Center se encuentra dividido en varias secciones, todas accesibles desde un gran patio central ocupado por un restaurante y una cafetería de diseño futurista. La sección que más me gustó fue el cine Imax, una gigantesca pantalla envolvente, casi semiesférica. Al entrar te pones unas gafas especiales que te permiten disfrutar en perfecto 3D de espectaculares documentales sobre el espacio. Vimos dos, uno sobre el transbordador espacial en alemán y otro sobre la ISS en inglés. Hubo un par de despegues de un transbordador y un cohete Proton ruso que te hacían agarrarte a la butaca y casi casi morder el polvo (de hecho, en el segundo simularon el efecto como si se rompieran las gafas, ¡genial!).

Las gafas del Imax

Las gafas del Imax

Otra de las secciones se denominaba Planet Quest, y consistía en una especie de montaña rusa que recorría gran parte del recinto por su parte superior. Cada asiento al cerrarse mostraba frente a tus ojos una pantalla de televisión, que durante el veloz paseo mostraba sobrevuelos sobre los diferentes planetas del Sistema Solar. Yo prefería mirar abajo y a los lados para observar qué estábamos ‘sobrevolando’ realmente. Vino bien para soltar un poco de adrenalina.

La sección más aburrida fue la de Star Trek. Consistía en una especie de nave espacial, con puertas futuristas de esas que se abren solas hacia arriba. Había actores vestidos de Star Trek haciendo guardia en cada puerta. Por varias televisiones veíamos escenas de Star Trek, hasta que de repente empezaron a sonar alarmas, las luces se apagaron y nos llevaron corriendo a otra sala en la que los actores de la tele aparecieron en vivo. Creo que hablaban todo el rato en alemán. Debía estar bien para los fans de aquella serie, pero me pareció un tostón.

La tercera atracción que visitamos fue StarGate. De nuevo con actores en vivo, iban contando una historieta de una reina vestida con telas del antiguo Egipto. De pronto nos obligaron a seguir a la reina por unos pasillos, nos dieron unas gafas especiales como las del Imax y entramos en una sala de cine pequeñita. Un tío iba comprobando que todos teníamos bien colocados los cinturones de seguridad de la butaca, y que no había niños demasiado pequeños. Dijo que había unos sensores que detectaban ataques epilépticos o similares y que si alguien sufría uno la atracción se pararía automáticamente. Ante tal despliegue de medios la espectación era total. Entonces empezamos a ver por la pantalla un túnel por el que se desplazaba la supuesta nave en la que estábamos montados. Disparaba a monstruos de cuello largo que literalmente atravesaban la pantalla (las gafas 3D tenían la culpa) y nos escupían, la nave realizaba acelerones bruscos, se inclinaba, … todo con gran realismo debido a que desde los asientos salían chorritos de agua a la cara, en los respaldos había muelles que te empujaban por detrás, y la plataforma de la sala se movía también. No estuvo mal.

Maqueta de la Luna

Maqueta de la Luna

Había una zona dedicada a los viajes espaciales, con trajes de cosmonautas reales, paquetes de comida espacial, fotos, libros de ruta del Apollo 11, etc. Junto a ellos una maqueta de plástico blando que simulaba una zona craterizada de la Luna para que los niños jugaran. Y en una pequeña sala sin asientos se proyectaba una animación por ordenador de un viaje a la Luna.

Trajes de astronauta

Trajes de astronauta

En el pabellón al aire libre sólo había una maqueta a escala 1:1 del cohete Ariane. La maqueta formaba parte de la atracción de caída libre, típica de los parques de atracciones. Se echaban de menos maquetas de otros cohetes, tanto americanos como rusos, y de un transbordador.

Maqueta a escala 1:1 del cohete Ariane

Maqueta a escala 1:1 del cohete Ariane

Por supuesto, la salida estaba junto a la tienda de recuerdos: tazones de Star Trek, disfraces, marcianos verdes hinchables, llaveros, puzzles, maquetas de naves espaciales, etc. una pena que no hubiera ni un solo libro.

Publicado bajo la categoría Astronautica, Ciencia ficción, Turismo Astronómico, Visitas

Astropunts; Una iniciativa astro-turística en Castellón

En 1991 se inauguraba en el Grao de Castellón el primer Planetario de la comunidad Valenciana, el quinto del estado español y en aquel momento el más moderno. Con esta iniciativa, nuestra provincia se situaba en la cabeza para la divulgación de las ciencias y en concreto de la astronomía.

 

Pero un planetario tan sólo es un magnifico simulador del cielo que le confiere un potencial didáctico excelente, pero no la posibilidad de observar el cielo real y las maravillas que esconde. De hecho sería inviable instalar un observatorio junto a las instalaciones del planetario por la acusada polución lumínica que sufren nuestras ciudades, de la que Castellón, por desgracia no está exenta.

 

Construir un observatorio astronómico con la finalidad tanto de investigación como de utilidad pública ha sido un sueño acariciado por Sociedad Astronómica de Castellón en varias ocasiones, pero la fuerte inversión económica, la complejidad de elegir una ubicación en el interior, lejos de las luces urbanas, y materializar un proyecto de explotación adecuado, ha provocado que de momento tan sólo sea un proyecto por materializar.

 

Sin embargo la Asociación Portmader, una asociación gestora de la iniciativa comunitaria Leader Plus en 31 municipios de Els Ports-Maestrat, contempló la posibilidad crear unos “Puntos de Observación Astronómica; ASTROPUNTS” aprovechando la calidad del cielo del interior de nuestras comarcas,  como un proyecto más que ayude a culminar los objetivos de la asociación, que no son otros que el desarrollo integral, armónico, sostenido y endógeno de las comarcas del Els Ports-Maestrat.

 

La iniciativa de construir estos observatorios astronómicos, tiene la finalidad de fomentar el aumento de actividades de turismo rural dirigido a los amantes de la naturaleza y la ciencia. Para la localización de los puntos de observación Astronómica, además de la situación estratégica del enclave, también se han seguido criterios de proximidad a alojamientos rurales o poblaciones, así como su interés como iniciativa para fomentar el desarrollo rural en general.

 

 La iniciativa, pionera en nuestro estado, se ha materializado finalmente con la construcción de cuatro observatorios astronómicos, todos ellos idénticos,  en Morella, Culla, Todolella y Vistabella, todos ellos en puntos altos.

astropuntsastropunts_2 

El proyecto ha sido supervisado por el técnico de Portmader Teudo Sangüesa Milián, y la inversión con la que se ha contado ha sido de 100.000 euros y se ha invertido mayoritariamente en un instrumental de excelente calidad.

 astropunts_1

Entre el instrumental destacan los cuatro telescopios refractores apocromáticos de la prestigiosa marca Astrotech A&M con óptica TMB de 130 milímetros de abertura y 1200 mm de distancia focal F:9, sobre monturas ecuatoriales computerizadas modelo Eq6.

 

 Además se complementa con diferentes accesorios que permitirá desde variar la potencia del telescopio, observar las protuberancias del Sol de forma segura, hasta permitir realizar astrofotografía.

 astropunts_3

Las cúpulas son de construcción artesanal, de forma que se ha evitado un desembolso excesivo a costa de gran ingenio de diseño. La apertura se consigue mediante el desplazamiento en dos partes del habitáculo mediante unos raíles.  El aforo de cada observatorio es de entre 8 y 10 personas aproximadamente.

astropunts_4 

La explotación de los observatorios ha sido cedida a los ayuntamientos de las diferentes localidades, de forma que son las diferentes corporaciones locales las que ahora se encargarán de ofertar la actividad a colegios, asociaciones culturales y público en general, con la supervisión de una plantilla de monitores ya seleccionada.

 

Tras un periodo de calibración, el observatorio de Todolella fue inaugurado el pasado mes de noviembre contando con la asistencia de el Director General de Turismo de Interior de la Generalitat Agustín Grau y el presidente de la Asociación Portmader Alfredo Querol.  Por otra parte la inauguración de el de Vistabella ha sido realizada el pasado  9 de febrero de 2008 con una conferencia a cargo del Dr. Juan Fabregat, y el de Morella, previsiblemente el centro más activo, fue realizada el pasado mes de agosto y ya ha participado en las “100 horas de astronomia” dentro del proyecto IYA2009.

 

Se espera que en los próximos meses, todos los castellonenses y visitantes puedan disfrutar de una actividad cultural más, que fomente el turismo del interior de nuestra provincia y nos acerque un poco más a la belleza de los astros.

Publicado bajo la categoría Agrupaciones de tu provincia, Astronomía en la vida cotidiana, Enclaves astronomicos, General, Instrumentación, Observatorios de tu provincia, Turismo Astronómico

Visita al Observatorio Real de Bélgica

El Observatorio Real de Bélgica (ROB) fue creado en 1826 siendo su primer director Adolphe Quetelet (1796-1874). Inicialmente se encontraba en el centro de Bruselas, pero en 1876 a la vez que se nombró como sucesor del primer director a Houzeau se realizó el traslado del Observatorio de su lugar original de Saint-Josse-ten-Noode a donde se encuentra ahora, en las afueras de Bruselas, junto con el Instituto Real de Meteorología y el Instituto de Aerodinámica Espacial de Bélgica.

En el Observatorio, además de realizarse una labor investigadora de vanguardia (en colaboración con grandes observatorios internacionales como el Observatorio Europeo del Sur, ESO) también están al frente de la labor divulgadora tanto desde el Planetario de la ciudad de Bruselas como con las visitas guiadas que el público puede realizar al Observatorio. Multitud de eventos son organizados desde el ROB con el fin de exponer a la gente los avances de la astronomía: observaciones con algunos de los telescopios del ROB, eventos especiales como el tránsito de Venus de 2004, cursos y seminarios de divulgación científica, etc…

Nosotros contactamos con el ROB a través de su página web, http://www.astro.oma.be/ . Aprovechando nuestras vacaciones en Bélgica en septiembre de 2004, decidimos intentar concertar una visita en el ROB y gracias al astrónomo Dr. Jan Cuypers pudimos conseguir una cita. Muy amablemente Jan nos guió en una visita privada por todos los departamentos del ROB. Desde los distintos observatorios hasta el museo, las páginas de la historia se veían reflejadas por todos sus pasillos. Desde aquí nuestro agradecimiento a Jan por el tiempo tan valioso que nos dedicó.

Algunos de los observatorios ubicados en los jardines del Real Observatorio de Bélgica
Algunos de los observatorios ubicados en los jardines del Real Observatorio de Bélgica

Actualmente en el ROB se trabaja en varios campos de la Astrofísica y de la Geofísica, aunque pocos son ya los telescopios que están en uso, entre otras cosas por la contaminación lumínica y también por su tecnología que se ha quedado un poco anticuada. Uno de los telescopios que goza de mejor salud es el solar, pues desde el ROB se observa diariamente el Sol.

LA FÍSICA SOLAR

La física solar es una disciplina en plena expansión en el ROB. Las observaciones de la fotosfera solar se realizan diariamente desde hace 30 años. El Solar Influences Data analysis Center (SIDC) que tiene su sede en el ROB juega un papel importantísimo a nivel europeo y mundial. Además de calcular el Indice de Manchas Solares el SIDC también se encarga de proporcionar el pronóstico del tiempo en el espacio, esta es una nueva ciencia interdisciplinar. La actividad solar, que varía de ciclo en ciclo, puede haber tenido un impacto importante en la evolución climática en la Tierra y el SIDC proporciona pronósticos y advertencias que pueden ayudar a identificar y anticipar las influencias solares.

Nosotros tuvimos la suerte de visitar el departamento de física solar y ver el telescopio con el cual toman las imágenes diarias. Además nos contaron que desde este departamento centralizan los datos del número de Wolf enviados desde todos los países de Europa. El Grupo Astronómico Silos de Zaragoza (GAS) hace algunos años también participó durante un periodo de tiempo bastante largo en estas observaciones. Para nosotros saber que nuestros datos estaban guardados en sus archivos fue todo un orgullo.

Telescopio de observación solar
Telescopio de observación solar

Aunque los cielos de Bruselas tienen bastante contaminación lumínica esto no afecta a la observación solar que se realiza de forma continua en el ROB. De todos modos las observaciones tratan de realizarlas por la mañana que es cuando la atmósfera tiene mayor calidad y la polución todavía no se ha levantado demasiado. Pero desgraciadamente los cielos de esta ciudad están muy frecuentemente cubiertos de nubes. El telescopio que usan es un refractor de 150 mm y una distancia focal de 2400 mm. La montura es ecuatorial y todo está motorizado. Además de recogerse imágenes a través de una CCD, también se hace proyección obteniéndose un circunferencia solar de 25 cm de diámetro y una resolución de 2 segundos de arco, la mejor si tenemos en cuenta la limitación del seeing de la atmósfera.

Como anécdota nos contaron que para calcular la constante de normalización del número de Wolf entre los distintos observadores de los que reciben datos, utilizan como patrón o referencia los datos enviados por un observador casi centenario.

EL TRÁNSITO DE VENUS

Juan-Charles Houzeau siempre fue muy activo en el ámbito de la astronomía y nunca dejó de aportar resultados de sus observaciones y sus investigaciones a la Academia Real de Bélgica. Entre otras cosas viajó a Panamá y Perú para completar su famoso atlas estelar publicado bajo el nombre de Uranometria general. También fue el organizador de las expediciones belgas para la observación del tránsito de Venus de 1882. Él mismo dirigió una observación desde San Antonio (Texas) mientras que el astrónomo Louis Niesten conducía una misión similar en Santiago de Chile.

Houzeau ya propuso la observación del tránsito de Venus con la ayuda de unos heliómetros desde dos lugares distantes para el tránsito de 1874 pero Bélgica en esos momentos no estaba en condiciones de organizar dichas expediciones. Estos proyectos pudieron concretarse para la observación del tránsito siguiente en 1882. Bélgica organizó entonces dos expediciones que se dotaron cada una con un heliómetro especialmente construidos para la observación de este fenómeno según los planes del astrónomo belga Louis Niesten por la empresa Grubb de Dublín.

El heliómetro

Un heliometro consiste en un telescopio cuyo objetivo está dividido en dos mitades por su diámetro. Estas dos mitades yuxtapuestas pueden resbalar una sobre la otra. Este instrumento se utiliza generalmente para medidas del diámetro del Sol pero también pueden realizarse otras medidas, como fue el caso de las observaciones del tránsito de Venus. La gran ventaja de este dispositivo era que no se limitaba a un simple cronometraje de los tiempos de principio y final del tránsito, sino que tales medidas podían efectuarse durante toda la duración del fenómeno. Así finalmente se obtenía una medida precisa de la duración del trayecto de Venus sobre la totalidad del disco solar. Cuando se podían comparar estas medidas con otras medidas similares efectuadas desde otro lugar de la Tierra, se podía calcular en primer lugar el paralaje, y deducir a continuación un valor de la distancia Tierra-Sol. Este último constituía el objetivo principal de las expediciones organizadas en distintos puntos del mundo para la observación del tránsito de Venus.

Uno de los dos heliómetros se transformó en un instrumento fotográfico y se le perdió la pista. El objetivo del otro se guardó en un antiguo museo y se encontraron algunas partes de este heliómetro en los sótanos del Observatorio. Los objetivos se conservaron juntos en el museo y también la pantalla de proyección. Sin embargo no se encontraron los montajes que garantizaban la conexión entre el pie del instrumento y el tubo del telescopio y permitían el seguimiento del Sol sobre el cielo durante la duración de la observación.

Lente y pantalla del heliómetro

Lente y pantalla del heliómetro

Este pasado tránsito de Venus también fue observado con el único heliómetro que aún se conserva. En esta ocasión no se organizó ninguna expedición al nuevo mundo, pero ello no impidió que el viejo heliómetro trabajase a pleno rendimiento más de un siglo después.

Tubo y montura azimutal del heliómetro

Tubo y montura azimutal del heliómetro

ALGUNOS TRABAJOS DESARROLLADOS EN EL ROB

El Dr. Jan Cuypers trabaja dentro del ROB en el departamento de Astrofísica, más concretamente en la sección donde se estudia la dinámica y composición de estrellas cercanas. Su herramienta de estudio es fundamentalmente la Asterosismología, rama de la Astronomía que estudia el interior de las estrellas pulsantes, ya que la interpretación del espectro de frecuencias de vibración de estas estrellas da información de cómo es dicho interior.

Cuypers ha realizado multitud de estudios sobre estrellas. Quizás habría que destacar su investigación en estrellas tipo B y estrellas Beta Cephei. Las primeras se caracterizan por ser muy masivas, entre 3 y 30 masas solares, y por morir transformándose en supernovas, lo que hace interesante estudiar su composición química. Las Beta Cephei son estrellas que están abandonando la secuencia principal sufriendo una lenta expansión lo que conlleva variaciones de brillo y del periodo de pulsación que resultan muy interesantes para completar las teorías de evolución estelar. En general sus estudios se han basado en la detección y análisis del periodo de estrellas variables usando espectroscopia y datos fotométricos, incluyendo las observaciones realizadas por el satélite Hipparcos.

Creemos interesante comentar que en el ROB también se llevan varios temas de investigación en los que los astrónomos amateur tienen una participación muy importante. En gran cantidad de casos las magnitudes de las estrellas que se observan son alcanzables por los telescopios no profesionales, de modo que es posible contribuir haciendo fotometría en varios de los programas que desarrollan astrónomos del ROB. Un ejemplo claro es el de las estrellas variables tipo Delta Scuti. Estas estrellas son pulsantes con una curva de luz que varia de amplitud cíclicamente en el tiempo y donde se observan pulsaciones de distintas frecuencias, radiales y no radiales. La necesidad de observarlas de la manera más continuada posible, para obtener las frecuencias de oscilación de la forma más clara posible, es lo que conduce a que los programas de observación se organicen a nivel internacional de manera que la estrella en estudio esté siendo observada en todo momento por algún observatorio en el mundo. De esta forma se consiguen identificar mejor las frecuencias de oscilación. Un ejemplo de esta colaboración es la efectuada por el astronómo amateur Joaquín Vidal, quien observó desde su Observatorio de Monegrillo (Zaragoza) la estrella V350 Peg. Del estudio que se hizo con los datos fotométricos obtenidos resultó una publicación en Astronomy and Astrophysics (1).

Observación desde el ROB del último tránsito de Venus

Observación desde el ROB del último tránsito de Venus

REFERENCIAS

(1)Vidal-Sainz, J., Wils P., Lampens P., Garcia-Melendo, E., The multiple frequencies of the delta Scuti star V350 Peg, Astronomy and Astrophysics 394, 585 (2002).

Publicado bajo la categoría General, Investigación Amateur, Sol, Turismo Astronómico, Visitas
Etiquetas: , , , , , , , , , ,

El Leviatán de Parsonstown

A mediados del siglo XIX dos países se disputaban la supremacía en la fabricación de telescopios: los alemanes habían conseguido grandes logros con los refractores, los británicos por su parte apostaban por el reflector. William Herschel, un inglés nacido en Alemania, construyó un enorme reflector de 49,5 pulgadas (125 cm) sin rival en su época.

Pero fue un aficionado irlandés, William Parsons, quien llevando la aperturitis hasta extremos insospechados, construyó el mayor telescopio del mundo: el Leviatán de Parsonstown.

La localidad de Birr en County Offaly está situada casi en el centro geográfico de Irlanda. En la actualidad cuenta con 3.600 habitantes y en sus calles se pueden ver preciosas casas de estilo georgiano. Aquí reside desde 1620 la familia Parsons, condes de Rosse, motivo por el que la ciudad fue conocida durante mucho tiempo como Parsonstown.

El castillo de Birr no se puede visitar, sigue siendo una residencia privada. Hoy por hoy es propiedad de William Clere Leonard Brendan Parsons, séptimo conde de Rosse, nacido en 1936. El actual conde ha creado un pequeño museo en el castillo y ha restaurado el telescopio de su tatarabuelo. La visita permite acceder a los jardines de la finca, al telescopio y al museo, que exhibe una interesante colección de instrumental científico.

Lord Rosse

200px-william_parsons_earl_of_rosseEn 1800 nació William Parsons, quien se convertiría en tercer conde de Rosse en 1841 tras la muerte de su padre. Al igual que sus hermanos, William estudió sus primeros años en el castillo de Birr dedicando especial interés a la ciencia y la ingeniería. A la edad de 18 años fue enviado al Trinity College de Dublín y posteriormente a Oxford, en Inglaterra, donde en 1822 se graduó con honores en Matemáticas.

De 1823 a 1834 estuvo dedicado a la política, ostentando un cargo en la Cámara de los Lores. En esta época ya empezó a manifestar su interés por la astronomía, en 1824 ingresa en la Royal Astronomical Society y dos años después ya había adquirido los suficientes conocimientos de óptica como para comenzar sus experimentos de fabricación de espejos. En 1836 se casó con Mary Field, una rica heredera de Yorkshire, que con el tiempo llegaría a ser una gran fotógrafa y cuyos fondos ayudaron a financiar la fabricación de los telescopios de Lord Rosse.

La construcción del Leviatán

A mediados del siglo XIX muchos astrónomos pensaban que los descubrimientos de Fraunhofer habían demostrado que el refractor era insuperable y que no tenía sentido esforzarse por perfeccionar el reflector. A pesar de ello, Parsons soñaba con fabricar un reflector mayor que todos los existentes. Desgraciadamente Herschel no había publicado nunca sus métodos de fabricación y Parsons tuvo que empezar de cero.

Encontrar obreros especializados en la zona no era tarea fácil, así que con la ayuda de un competente herrero llamado Coghlan, formó a un equipo que en poco tiempo manejaba a la perfección los tornos, crisoles y pulidoras. Durante diecisiete años de experimentación construyó un espejo de 38 centímetros, luego otro de 61 y, finalmente en 1840, uno de 91 centímetros que era casi tan grande como el mayor de los construidos por Herschel. En esa época no se utilizaban espejos de cristal sino de espéculo, una aleación blanca muy resistente formada por cuatro partes de cobre y una de estaño.

El primer problema era el de fundir el espejo de metal sin que se rompiese. Dedicó cinco años a buscar una adecuada aleación de cobre y estaño y, después, considerando quebradiza la aleación, decidió fundir los espejos por piezas separadas para luego unirlas por soldadura y remachado. A continuación cubría el espejo con estaño calentado hasta fundirlo y luego lo dejaba enfriar muy lentamente.

Para darles forma diseñó y fabricó una esmeriladora-pulidora mecánica accionada por un motor de vapor. En el museo del castillo se pueden ver algunas piezas de esta máquina y un modelo a escala.

birr2

El reverendo Thomas Romney Robinson, director del observatorio de Armagh, se trasladó a Birr para probar los espejos. El clima, como suele suceder cuando se estrena telescopio, no ayudó y durante varias noches esperaron a que el viento amainara y las nubes desaparecieran. Utilizando oculares de gran aumento se dieron cuenta de que el espejo segmentado causaba problemas, este hecho llevó a Parsons a decantarse por los espejos de una sola pieza.

Los primeros telescopios de Lord Rosse iban montados sobre un armazón de madera con poleas, cadenas y contrapesos siguiendo el diseño Sir William Herschel. El armazón con ruedas se sustentaba sobre una pista circular, lo que permitía al instrumento girar 360º y así poder apuntar a casi cualquier parte del cielo.

A pesar de las alabanzas de Robinson, Lord Rosse consideraba estos instrumentos como el paso previo necesario para emprender la fabricación del instrumento de sus sueños, el Leviatán tendría el doble de diámetro que su mayor telescopio.

El 12 de abril de 1842 se pusieron en marcha los crisoles, cada uno de siete metros de ancho. Los crisoles se alimentaban con turba, un combustible fácil de conseguir en los alrededores y del que se consumieron más de 50 metros cúbicos. Los lingotes de metal tardaron diez horas en derretirse. A la una de la madrugada se puso en marcha el proceso de moldeado: los tres crisoles vertieron en el molde el metal fundido. Lo dejó enfriar lentamente durante 16 semanas, lo pulió…y se le rompió justo cuando iba a colocarlo en el telescopio. Tuvo que volver a fundir el metal y en este segundo intento consiguió un espejo de forma y brillo perfectos. Dado que los espejos de metal se oxidaban muy rápidamente, especialmente en el húmedo clima irlandés, Parsons necesitaba un segundo espejo de repuesto, tras otros dos intentos fallidos logró un quinto espejo satisfactorio que utilizaría como repuesto.

El espejo, 182 cm de diámetro y cuatro toneladas, se montó sobre un tubo de madera de diecisiete metros de largo, los listones de madera estaban unidos por anillos de hierro de modo similar al de un barril. El telescopio iba colocado entre dos muros de mampostería de diecisiete metros de altura separados entre sí siete metros. Se movía mediante un ingenioso sistema de palancas y pesas ideado por Thomas Grubb en Dublín. Para subir y bajar el tubo era necesaria la colaboración de dos operarios que colocaban el telescopio a la altura deseada a lo largo del meridiano con ayuda de un cabestrante. Otro ayudante lo hacía girar a los lados, lo que permitía un pequeño ajuste en azimut entre los dos muros. Un cuarto ayudante era el encargado de elevar la plataforma de observación. El tubo que tenía un margen de movimiento de unos 15º entre los muros de piedra no podía seguir un objeto durante más de una hora. Los observadores tenían que esperar a que el objeto pasara por el meridiano local para poder observarlo.

Además tenían que esperar a que el cielo se despejara. Posiblemente Birr sea uno de los peores lugares posibles para instalar el mayor telescopio del mundo, sólo de vez en cuando el cielo se despejaba y había una calma atmosférica que permitía buenas vistas. En las crónicas se cuenta que el telescopio sólo se podía utilizar unas sesenta noches al año. El tubo no tenía buscador, para localizar los objetos Lord Rosse utilizaba un ocular de poca potencia que cubría un campo de más de medio grado. Además podía utilizar los oculares por pares, el soporte del ocular disponía de un marco deslizante en el que se podían insertar dos oculares, pudiendo intercambiar los aumentos simplemente con mover el marco.

Una de las raras noches en que el cielo estaba en calma, en abril de 1845, William Parsons observó M51. En el Leviatán aparecía como una majestuosa espiral bellamente tachonada de estrellas, lo que le valdría el nombre de galaxia del Remolino. Este descubrimiento lo animó a seguir buscando otras espirales en el cielo pero ese mismo año se produjo la gran hambruna irlandesa, una crisis provocada entre por la escasez de patata y que costó la vida a cientos de miles de personas y obligó a otros miles a emigrar a los Estados Unidos. Como terrateniente, Lord Rosse tuvo que hacer frente a esta desgracia y no pudo retomar las observaciones hasta 1848.

birr1

En 1848, Lord Rosse estudió una mancha nebulosa que había sido observada por primera vez en 1731 por el astrónomo inglés John Bevis y que Messier había catalogado con el número uno de su lista de objetos. Lord Rosse descubrió que M1 era una mancha nebulosa irregular con filamentos brillantes que le recordó a las patas de un cangrejo, la llamó Nebulosa del Cangrejo, nombre que seguimos utilizando en la actualidad.

En 1850 ya había identificado catorce nebulosas, entre otras, M77, M95 en Leo y M33 la espiral del Triángulo. Robinson y la mayoría de los astrónomos de la época pensaban que no se trataba de galaxias independientes, sino que formaban parte de la Vía Láctea. Lord Rosse supuso que las espirales eran universos-isla, una idea ya conjeturada por Immanuel Kant, e intuyó erróneamente que todas las nebulosas, incluidas la de Orión y la del Anillo en la constelación de Lira, se podrían descomponer en estrellas independientes con un telescopio mayor.

Lord Parsons descubrió entre los años 1848 y 1865 con los telescopios de 72 y 36 pulgadas 226 objetos del catálogo NGC (trabajo publicado por su hijo Laurence en Observations of Nebulae and Clusters of Stars Made With the Six-foot and Three-foot Reflectors at Birr Castle From the Year 1848 up to the Year 1878, Scientific Transactions of the Royal Dublin Society Vol. II, 1878). Johan Ludvig Emil Dreyer, quien sería el compilador del catálogo NGC, descubrió otros 18 objetos gracias al mayor de estos instrumentos; Robert Stawell Ball, otro de sus ayudantes, descubrió también 11 objetos NGC trabajando en compañía de Rosse con dicho telescopio.

A pesar de estar más dedicado a la observación de nebulosas, también dirigieron el telescopio a los planetas y a la Luna. Una de las ideas consistía en comparar las formaciones lunares con las terrestres, dedicando sus esfuerzos a la búsqueda de volcanes lunares. En el museo se conservan unos preciosos dibujos de las observaciones de cráteres lunares. En 1852 varios miembros de la sección lunar de la British Association plantearon la posibilidad de utilizar el Leviatán para crear un nuevo mapa de la Luna bajo distintas condiciones de iluminación.

birr3

Uno de sus últimos usos astronómicos fue confirmar, en agosto de 1877, la existencia de los diminutos satélites de Marte descubiertos desde Estados Unidos por el astrónomo Asaph Hall.

El telescopio Leviatán aparece mencionado en la novela de Julio Verne titulada De la Tierra a la Luna, en donde se le cita como el mayor del mundo en su época (1865).

El cuarto conde de Rosse

De los cuatro hijos de William Parsons, dos heredaron la pasión por la astronomía de su padre. Charles se convirtió en un ingeniero famoso gracias a la invención de la turbina de vapor y sus trabajos tuvieron una gran influencia en ingeniería naval y eléctrica. Fue el fundador de la empresa Grubb-Parsons de Newcastle-on-Tyne tras comprar el taller óptico de Grubb, continuando así la tradición empezada por su padre. La firma siguió trabajando hasta mediados de los años ochenta del siglo XX, habiendo construido algunos de los mayores telescopios del mundo, incluido el telescopio Isaac Newton de 98″ actualmente en las Islas Canarias.

Sin embargo fue Laurence, cuarto conde de Rosse, quien más se dedicó a la astronomía. Durante toda su vida aplicó un buen número de mejoras al Leviatán. Su mayor descubrimiento fue la determinación entre 1869 y 1872 del calor superficial de la Luna, para el que consiguió un valor muy cercano al admitido actualmente. Dado que la Luna no tiene atmósfera su superficie se calienta mucho cuando está iluminada por el Sol y se enfría en la oscuridad, Laurence Parsons determinó que la temperatura de la Luna era de 119ºC, el valor actual es de 69ºC, lo que contradecía la opinión general de que la temperatura tenía que estar por debajo de cero. Para realizar esta medición fabricó un telescopio portátil con un espejo parabólico de cristal plateado y una focal muy corta en cuyo foco colocó un termopar. Parte de la radiación recibida de la Luna es radiación solar reflejada, formada principalmente por longitudes de onda correspondientes al espectro visible inferiores a 0,7 micras, el resto es radiación directa de la superficie lunar caliente que, como radiación de baja temperatura, está formada por longitudes de onda superiores a una micra. Laurence Parsons encontró que el 14% de la radiación lunar era radiación solar reflejada y que el 86% era radiación lunar propiamente dicha, derivada del calor de nuestro satélite.

Sus resultados fueron confirmados por mediciones muy precisas realizadas en 1874 por Very en el observatorio de Allegheny en Pittsburgh, EE.UU., sin embargo algunos astrónomos de la época no supieron apreciar el valor del descubrimiento refiriéndose a Laurence Parsons con desprecio como “un loco irlandés de los pantanos”.

El telescopio portátil con el que se hicieron las mediciones del calor de la Luna se puede ver en el museo, así como una copia del artículo de la revista de la Royal Dublin Society en el que se detallan los resultados obtenidos.

birr4

Con el telescopio de 36 pulgadas estudió los espectros de once nebulosas y las observaciones demostraron que sólo cuatro de ellas eran gaseosas, el resto mostraban los espectros continuos característicos de objetos estelares. No obstante la instalación del espectrómetro no era la ideal y contribuyó a dificultar las observaciones.

El Leviatán en la actualidad

En 1968 el telescopio se encontraba en muy mal estado, llevaba noventa años sin utilizarse. Ese año se realizó una exposición en Birr para conmemorar el centenario de la muerte de William Parsons a la que acudió el conocido astrónomo británico Patrick Moore para dar una conferencia sobre las observaciones realizadas con el Leviatán. Moore había hablado el año anterior sobre la astronomía en el castillo de Birr en su programa Sky at Night de la BBC despertando el interés de muchas personas y organismos influyentes por restaurar el telescopio. La conferencia se convirtió en un pequeño librito, The Astronomy of Birr Castle, publicado en 1971 por Michael Beazley.

En los años ochenta se restauraron una buena parte de los fondos documentales que se encontraban en muy mal estado en un ala abandonada del castillo. Muchos de los viejos documentos y fotografías fueron esenciales para poder llevar a cabo los trabajos de restauración. En febrero de 1996 comenzaron las obras de reconstrucción del telescopio tarea financiada en un 75% con fondos de la Unión Europea. El trabajo fue encargado a Michael Tubridy, un ingeniero irlandés más conocido por formar parte del grupo de música The Chieftains. Reunir todas las piezas del puzzle resultó una labor propia de detectives hasta conseguir localizar la ubicación de las distintas partes del mecanismo, enterradas por el paso del tiempo.

birr5

La reconstrucción del tubo llevó seis meses. Sólo se pudo aprovechar el 10% de las tablas de madera originales y la mitad de las bandas metálicas. Además de la reconstrucción del tubo, el equipo de restauradores se tuvo que enfrentar a otros retos. Uno de los más desafiantes fue la recuperación de la junta universal, un mecanismo que soportaba todo el peso del telescopio en sus distintas posiciones. Tras su limpieza y puesta a punto se comprobó que había resistido bien el paso del tiempo y que no era necesario reconstruirla, lo que supuso un gran alivio para el equipo. Otra de las piezas esenciales era el cabestrante utilizado para subir y bajar el telescopio. En los muelles de Dublín encontraron uno similar al de Birr que fue donado para el proyecto de restauración y que tras una ligera modificación se adaptó perfectamente a su nueva función.

El 23 de febrero de 1997, la presidenta de Irlanda Mary Robinson inauguró oficialmente el nuevo Leviatán de Birr.

El Leviatán fue el mayor telescopio del mundo desde su construcción en 1842 hasta la entrada en funcionamiento en 1917 del gran telescopio Hooker de 100 pulgadas de Monte Wilson. Técnicamente era un buen instrumento que resultó prácticamente inútil debido a las malas condiciones climatológicas de Irlanda, a la dificultad de su manejo y a las limitaciones de apuntado que tenía. El telescopio de Lord Rosse permitió observar estrellas de magnitud 18 y aunque algunos científicos se mostraron escépticos, como el óptico francés Leon Foucault que declaró que el Leviatán era una broma, muchos astrónomos declararon no haber visto en su vida mejores vistas a través de un telescopio.

birr6

El sueño de Rosse dio tres frutos importantes: en primer lugar demostró que la fabricación de grandes telescopios era una cuestión práctica. A diferencia de sus predecesores, en cuanto un ensayo le permitía extraer algunos datos, ya fuera éxito o fracaso, enseguida publicaba la información para quien pudiera aprovecharla. En segundo lugar demostró que además de la abertura del telescopio había que tener en cuenta la ubicación del mismo. El castillo de Birr está cerca de un pantano, este hecho no ayudaba a mejorar las condiciones de observación del Leviatán. De nada servía tener el mayor telescopio del mundo en un lugar donde casi siempre está nublado. A partir de entonces los astrónomos comienzan a plantearse seriamente la ubicación de los observatorios. En tercer lugar quedó patente que es fundamental disponer de un buen sistema de guiado y apuntado. Para que un telescopio sea práctico debe poder apuntar a cualquier parte del cielo que nos interese.

Bibliografía:

  • The History of the Telescope, Henry C. King, Dover, 2003
  • A History of Astronomy, A. Pannekoek, Dover, 1989
  • Reconstruction of the Rosse Six Foot Telescope, Michael Tubridy, Birr 1998
  • Epic Moon, William P. Sheehan, Thomas A. Dobbins, Willmann-Bell, Inc., 2001
  • An Acre of Glass, J.B. Zirker, The John Hopkins University Press, 2006
  • Seeing and Believing, Richard Panek, Fourth State, 2000
  • Historia del telescopio, Isaac Asimov, Alianza Editorial, 1986
  • Historia de los espejos, Mark Pendergast, Vergara, 2003
  • Birr Castle Demesne http://www.birrcastle.com
  • Cuaderno de viaje: http://viajero.blogalia.com
  • El Beso en la Luna: http://mizar.blogalia.com
  • Wikipedia http://en.wikipedia.org

Artículo publicado originalmente por Paco Bellido en la revista AstronomíA

Publicado bajo la categoría Enclaves astronomicos, Historia de la astronomía, Instrumentación, Turismo Astronómico
Arriba | Entradas (RSS) | Comentarios (RSS)