Acercaremos el cosmos a los ojos de millones de personas

Astrobloguers

Blog de los aficionados a la Astronomía
Astrobloguers » Entradas bajo la categoría Sol

Visita al Observatorio Real de Bélgica

El Observatorio Real de Bélgica (ROB) fue creado en 1826 siendo su primer director Adolphe Quetelet (1796-1874). Inicialmente se encontraba en el centro de Bruselas, pero en 1876 a la vez que se nombró como sucesor del primer director a Houzeau se realizó el traslado del Observatorio de su lugar original de Saint-Josse-ten-Noode a donde se encuentra ahora, en las afueras de Bruselas, junto con el Instituto Real de Meteorología y el Instituto de Aerodinámica Espacial de Bélgica.

En el Observatorio, además de realizarse una labor investigadora de vanguardia (en colaboración con grandes observatorios internacionales como el Observatorio Europeo del Sur, ESO) también están al frente de la labor divulgadora tanto desde el Planetario de la ciudad de Bruselas como con las visitas guiadas que el público puede realizar al Observatorio. Multitud de eventos son organizados desde el ROB con el fin de exponer a la gente los avances de la astronomía: observaciones con algunos de los telescopios del ROB, eventos especiales como el tránsito de Venus de 2004, cursos y seminarios de divulgación científica, etc…

Nosotros contactamos con el ROB a través de su página web, http://www.astro.oma.be/ . Aprovechando nuestras vacaciones en Bélgica en septiembre de 2004, decidimos intentar concertar una visita en el ROB y gracias al astrónomo Dr. Jan Cuypers pudimos conseguir una cita. Muy amablemente Jan nos guió en una visita privada por todos los departamentos del ROB. Desde los distintos observatorios hasta el museo, las páginas de la historia se veían reflejadas por todos sus pasillos. Desde aquí nuestro agradecimiento a Jan por el tiempo tan valioso que nos dedicó.

Algunos de los observatorios ubicados en los jardines del Real Observatorio de Bélgica
Algunos de los observatorios ubicados en los jardines del Real Observatorio de Bélgica

Actualmente en el ROB se trabaja en varios campos de la Astrofísica y de la Geofísica, aunque pocos son ya los telescopios que están en uso, entre otras cosas por la contaminación lumínica y también por su tecnología que se ha quedado un poco anticuada. Uno de los telescopios que goza de mejor salud es el solar, pues desde el ROB se observa diariamente el Sol.

LA FÍSICA SOLAR

La física solar es una disciplina en plena expansión en el ROB. Las observaciones de la fotosfera solar se realizan diariamente desde hace 30 años. El Solar Influences Data analysis Center (SIDC) que tiene su sede en el ROB juega un papel importantísimo a nivel europeo y mundial. Además de calcular el Indice de Manchas Solares el SIDC también se encarga de proporcionar el pronóstico del tiempo en el espacio, esta es una nueva ciencia interdisciplinar. La actividad solar, que varía de ciclo en ciclo, puede haber tenido un impacto importante en la evolución climática en la Tierra y el SIDC proporciona pronósticos y advertencias que pueden ayudar a identificar y anticipar las influencias solares.

Nosotros tuvimos la suerte de visitar el departamento de física solar y ver el telescopio con el cual toman las imágenes diarias. Además nos contaron que desde este departamento centralizan los datos del número de Wolf enviados desde todos los países de Europa. El Grupo Astronómico Silos de Zaragoza (GAS) hace algunos años también participó durante un periodo de tiempo bastante largo en estas observaciones. Para nosotros saber que nuestros datos estaban guardados en sus archivos fue todo un orgullo.

Telescopio de observación solar
Telescopio de observación solar

Aunque los cielos de Bruselas tienen bastante contaminación lumínica esto no afecta a la observación solar que se realiza de forma continua en el ROB. De todos modos las observaciones tratan de realizarlas por la mañana que es cuando la atmósfera tiene mayor calidad y la polución todavía no se ha levantado demasiado. Pero desgraciadamente los cielos de esta ciudad están muy frecuentemente cubiertos de nubes. El telescopio que usan es un refractor de 150 mm y una distancia focal de 2400 mm. La montura es ecuatorial y todo está motorizado. Además de recogerse imágenes a través de una CCD, también se hace proyección obteniéndose un circunferencia solar de 25 cm de diámetro y una resolución de 2 segundos de arco, la mejor si tenemos en cuenta la limitación del seeing de la atmósfera.

Como anécdota nos contaron que para calcular la constante de normalización del número de Wolf entre los distintos observadores de los que reciben datos, utilizan como patrón o referencia los datos enviados por un observador casi centenario.

EL TRÁNSITO DE VENUS

Juan-Charles Houzeau siempre fue muy activo en el ámbito de la astronomía y nunca dejó de aportar resultados de sus observaciones y sus investigaciones a la Academia Real de Bélgica. Entre otras cosas viajó a Panamá y Perú para completar su famoso atlas estelar publicado bajo el nombre de Uranometria general. También fue el organizador de las expediciones belgas para la observación del tránsito de Venus de 1882. Él mismo dirigió una observación desde San Antonio (Texas) mientras que el astrónomo Louis Niesten conducía una misión similar en Santiago de Chile.

Houzeau ya propuso la observación del tránsito de Venus con la ayuda de unos heliómetros desde dos lugares distantes para el tránsito de 1874 pero Bélgica en esos momentos no estaba en condiciones de organizar dichas expediciones. Estos proyectos pudieron concretarse para la observación del tránsito siguiente en 1882. Bélgica organizó entonces dos expediciones que se dotaron cada una con un heliómetro especialmente construidos para la observación de este fenómeno según los planes del astrónomo belga Louis Niesten por la empresa Grubb de Dublín.

El heliómetro

Un heliometro consiste en un telescopio cuyo objetivo está dividido en dos mitades por su diámetro. Estas dos mitades yuxtapuestas pueden resbalar una sobre la otra. Este instrumento se utiliza generalmente para medidas del diámetro del Sol pero también pueden realizarse otras medidas, como fue el caso de las observaciones del tránsito de Venus. La gran ventaja de este dispositivo era que no se limitaba a un simple cronometraje de los tiempos de principio y final del tránsito, sino que tales medidas podían efectuarse durante toda la duración del fenómeno. Así finalmente se obtenía una medida precisa de la duración del trayecto de Venus sobre la totalidad del disco solar. Cuando se podían comparar estas medidas con otras medidas similares efectuadas desde otro lugar de la Tierra, se podía calcular en primer lugar el paralaje, y deducir a continuación un valor de la distancia Tierra-Sol. Este último constituía el objetivo principal de las expediciones organizadas en distintos puntos del mundo para la observación del tránsito de Venus.

Uno de los dos heliómetros se transformó en un instrumento fotográfico y se le perdió la pista. El objetivo del otro se guardó en un antiguo museo y se encontraron algunas partes de este heliómetro en los sótanos del Observatorio. Los objetivos se conservaron juntos en el museo y también la pantalla de proyección. Sin embargo no se encontraron los montajes que garantizaban la conexión entre el pie del instrumento y el tubo del telescopio y permitían el seguimiento del Sol sobre el cielo durante la duración de la observación.

Lente y pantalla del heliómetro

Lente y pantalla del heliómetro

Este pasado tránsito de Venus también fue observado con el único heliómetro que aún se conserva. En esta ocasión no se organizó ninguna expedición al nuevo mundo, pero ello no impidió que el viejo heliómetro trabajase a pleno rendimiento más de un siglo después.

Tubo y montura azimutal del heliómetro

Tubo y montura azimutal del heliómetro

ALGUNOS TRABAJOS DESARROLLADOS EN EL ROB

El Dr. Jan Cuypers trabaja dentro del ROB en el departamento de Astrofísica, más concretamente en la sección donde se estudia la dinámica y composición de estrellas cercanas. Su herramienta de estudio es fundamentalmente la Asterosismología, rama de la Astronomía que estudia el interior de las estrellas pulsantes, ya que la interpretación del espectro de frecuencias de vibración de estas estrellas da información de cómo es dicho interior.

Cuypers ha realizado multitud de estudios sobre estrellas. Quizás habría que destacar su investigación en estrellas tipo B y estrellas Beta Cephei. Las primeras se caracterizan por ser muy masivas, entre 3 y 30 masas solares, y por morir transformándose en supernovas, lo que hace interesante estudiar su composición química. Las Beta Cephei son estrellas que están abandonando la secuencia principal sufriendo una lenta expansión lo que conlleva variaciones de brillo y del periodo de pulsación que resultan muy interesantes para completar las teorías de evolución estelar. En general sus estudios se han basado en la detección y análisis del periodo de estrellas variables usando espectroscopia y datos fotométricos, incluyendo las observaciones realizadas por el satélite Hipparcos.

Creemos interesante comentar que en el ROB también se llevan varios temas de investigación en los que los astrónomos amateur tienen una participación muy importante. En gran cantidad de casos las magnitudes de las estrellas que se observan son alcanzables por los telescopios no profesionales, de modo que es posible contribuir haciendo fotometría en varios de los programas que desarrollan astrónomos del ROB. Un ejemplo claro es el de las estrellas variables tipo Delta Scuti. Estas estrellas son pulsantes con una curva de luz que varia de amplitud cíclicamente en el tiempo y donde se observan pulsaciones de distintas frecuencias, radiales y no radiales. La necesidad de observarlas de la manera más continuada posible, para obtener las frecuencias de oscilación de la forma más clara posible, es lo que conduce a que los programas de observación se organicen a nivel internacional de manera que la estrella en estudio esté siendo observada en todo momento por algún observatorio en el mundo. De esta forma se consiguen identificar mejor las frecuencias de oscilación. Un ejemplo de esta colaboración es la efectuada por el astronómo amateur Joaquín Vidal, quien observó desde su Observatorio de Monegrillo (Zaragoza) la estrella V350 Peg. Del estudio que se hizo con los datos fotométricos obtenidos resultó una publicación en Astronomy and Astrophysics (1).

Observación desde el ROB del último tránsito de Venus

Observación desde el ROB del último tránsito de Venus

REFERENCIAS

(1)Vidal-Sainz, J., Wils P., Lampens P., Garcia-Melendo, E., The multiple frequencies of the delta Scuti star V350 Peg, Astronomy and Astrophysics 394, 585 (2002).

Publicado bajo la categoría General, Investigación Amateur, Sol, Turismo Astronómico, Visitas
Etiquetas: , , , , , , , , , ,

El tamaño sí que importa… a veces

SolLejos de lo que suele representar siempre una frase como la que he elegido para el título de esta entrada, esta entrada trata sobre la magnitud de brillo de las estrellas. Todos los que estéis un poco puestos en el mundillo de la astronomía o la astrofísica ya sabréis que para catalogar el brillo de una estrella se usa una escala de magnitudes que en principio iba del 1 al 6, pero que con el tiempo se ha ido incrementando tanto hacia valores mayores que 6 como menores que 1, incluyendo números negativos. Con esta entrada os mostraré qué significan estos valores y qué relación tienen con el tamaño y la distancia de las estrellas estudiadas. Comencemos.

La escala para medir el brillo de las estrellas recibe el nombre de magnitud y fue utilizada por primera vez por un astrónomo de la Antigua Grecia llamado Hiparco de Nicea. Catalogó las estrellas más visibles en el firmamento con la magnitud 1 y las menos visibles con la magnitud 6. Lógicamente, en esa época no tenían instrumentos de medida de la luminosidad de estas estrellas así que esta escala es simplemente una aproximación de lo que el ojo humano podía medir, es decir, es completamente subjetiva.

Fue a mediados del siglo XIX cuando un señor llamado Norman Pogson propuso que la intensidad de una estrella de magnitud uno era 100 veces superior a la intensidad de una estrella de magnitud 6. Esta teoría concordaba con lo que se observaba con los instrumentos de medida, de modo que la intensidad entre cada magnitud se convirtió en la manera científica de catalogar a las estrellas en la escala. Haciendo cálculos que tenéis perfectamente explicados en la Wikipedia, se puede comprobar que al pasar de una magnitud de la escala a otra se aumenta o disminuye la intensidad en un factor de aproximadamente 2,5. A partir de esto, se pudieron catalogar estrellas con magnitud mayor que 6 y con menor que 1, pero siempre manteniendo este factor 2,5 entre cada entero de magnitud.

Para aclarar un poco más las cosas, la magnitud se ha dividido en tres tipos. Simplemente os hago una pequeña descripción, sin entrar en más detalles.

  • La magnitud aparente es la intensidad que nos llega de un objeto. Es la escala que se suele utilizar habitualmente, aunque no es una medida demasiado precisa ya que dependiendo de donde nos encontremos en nuestro universo, este valor va a cambiar. El motivo es que cuanto más cerca estemos de una estrella más magnitud aparente tendrá y viceversa.
  • La magnitud visual es la magnitud de una estrella estimada con el ojo humano. Realmente es el mismo tipo que la anterior, pero la destaco por motivos históricos ya que fue la base de la escala realizada por Hiparco de Nicea.
  • La magnitud absoluta es la magnitud aparente que tendría un objeto si éste estuviera situado a una distancia de 10 pársecs, es decir 32,6 años luz. Esta es la escala más fiable ya que es objetiva, es decir, cualquier objeto puede ser catalogado de una manera más general y se pueden realizar comparaciones.

Magnitudes del Sol

Así pues ya podemos hacer una clasificación de las magnitudes aparentes de los principales objetos de nuestro firmamento. La estrella que nos da la vida, nuestro querido Sol tiene una magnitud de -26,8. Como veis un valor muy elevado en cuando a la intensidad que recibimos de él, lo cual es completamente lógico debido a su proximidad. El otro astro que tenemos más cerca es nuestra Luna, la cual tiene una magnitud que ronda los -12,6 cuando está en fase de Luna llena. Si recordáis el eclipse lunar que tuvo lugar el 21 de febrero del año pasado, la Luna fue eclipsada por la Tierra y su luminosidad, si no tuviéramos en cuenta el brillo de la Tierra, habría bajado hasta un valor de magnitud 10,19, que es aproximadamente la magnitud del tercer asteroide en ser descubierto, cuyo nombre es Juno y está en el cinturón de asteroides. Ahora bien, ¿por qué si tienen la misma magnitud, a Juno no lo vemos y a la Luna sí? Como bien podéis adivinar, es simplemente una cuestión de distancias y tamaños.

arcturus-solSi nos vamos a estrellas grandes como una gigante naranja como en el caso de Arturo, tenemos que posee una gran luminosidad ya que su magnitud es -0,04, pese a encontrarse a 36,7 años luz. Otro caso puede ser la supergigante azul Rigel cuya magnitud es 0,12 y está a la larga distancia de 773 años luz. Pero como extremo de estrellas gigantes está la más grande conocida, VY Canis Majoris, que al estar a 5000 años luz de distancia únicamente tiene una magnitud de brillo 9,5. Y si ahora nos vamos a estrellas pequeñas, tenemos Alpha Centauri A (recordar que el sistema Alpha Centauri es triple) que es ligeramente mayor que el Sol y tiene una magnitud de -0,01 debido a su gran proximidad a la Tierra, unos 4,4 años luz. Aunque la estrella más cercana del sistema Alpha Centauri, la famosa Próxima Centauri, al tratarse de una pequeña enana roja, tiene un brillo de magnitud 11. Y la estrella más brillante de nuestro cielo, Sirius, perteneciente al Can Mayor tiene un brillo de magnitud -1,5 y es casi el doble de grande que nuestro Sol. Es una estrella blanca de secuencia principal que se encuentra a 8,7 años luz.

En resumen. Tal y como podéis comprobar de este último párrafo el tamaño sí que importa en la magnitud aparente de brillo de los astros; pero no siempre, ya que la distancia a la que se encuentre la estrella o cualquier otro astro también es determinante. Hay otros factores que no he tenido en cuenta y que son importantes, como los motivos por los un astro tiene más o menos luminosidad o el tipo de radiación que emiten, pero como primera aproximación lo que os he contando es correcto.

Esto es todo por hoy. El mes que viene hablaremos de cómo medir la distancia a las estrellas que es otro tema muy interesante y que nos sirve de complemento para esta entrada.

Saludos ;)

Alpha Centauri vs Sol

Publicado bajo la categoría Educación Secundaria, Fotografía Astronomica, General, Historia de la astronomía, Instrumentación, Luna, Observatorios de tu provincia, Sol
Etiquetas: , , , , ,
Arriba | Entradas (RSS) | Comentarios (RSS)