Acercaremos el cosmos a los ojos de millones de personas

Astrobloguers

Blog de los aficionados a la Astronomía
Astrobloguers » Entradas bajo la categoría Educación Primaria

Un observatorio astronómico para Galicia

Germán Peris Luque.

Observatorio Astronómico de Forcarei (OAF)

 Imagen superior; el observatorio del OAF durante una noche de invierno
 
 Hace cinco  años y por iniciativa de la Asociación Astronómica de Rias Baixas, nacía un proyecto de construcción de un observatorio astronómico semiprofesional en tierras gallegas. Por aquel entonces el observatorio de mayor abertura en Galicia era el de la Universidad de Santiago, con 60 cm de diámetro, pero por desgracia ubicado en el entorno urbano de la preciosa ciudad de Santiago. Sin duda una ubicación buena para la divulgación y para la formación de futuros astrofísicos, pero con limitaciones para la investigación en muchos campos de la astronomía observacional por la proliferación de las luces urbanas.

Después de estudios detallados sobre una ubicación adecuada en los que se debía barajar variables muy diferentes, como prospecciones de la calidad de cielo, lejanía de parques eólicos, accesos, etc…se decidió su ubicación en la localidad de Forcarei (Pontevedra), gracias no sólo a la buena calidad del cielo y su comuncación, si no a la completa colaboración y facilidades mostradas en todo momento por el Concello y su alcalde David Raposeiras. La imagen de la izquierda es el momento de su inauguración el 13 de marzo de 2009.

 

Gracias a diferentes colaboraciones de entidades públicas; Concello de Forcarei, Xunta de Galicia y Ministerio de Agricultura e Unión Europea, hace justo dos años ahora se hacía realidad el proyecto y veía su primera luz un magnifico instrumento; un telescopio de la prestigiosa óptica americana RCOS de 51 centímetros F:8 (en configuración RC) sobre una montura ecuatorial Paramount ME y como detector principal una cámara CCD ST11000 con un tamaño del chip equivalente a un negativo de 35 milímetros  y un tamaño de píxel de 9 micras, lo que da una resolución aproximada de 0,5” por píxel. Para hacernos una idea grafica, con este telescopio y cámara, en configuración a foco primario, podemos casi abarcar la luna llena, y alcanzar detalles con una resolución  inferiores al kilómetro.

El observatorio, plenamente operativo, y actualmente gestionado por la Fundación  Ceo, Ciencia e Cultura (FC3), formada por AstroVigo, Concello de Forcarei y la Universidad de Vigo, tiene dos líneas bien marcadas; una destinada a la investigación en cualquier campo que quede al alcance del instrumento y una segunda y especialmente importante que es la divulgación y formación, destacando en esta última una gran multitud de visitas de estudiantes y público en general.

 

El observatorio además abre sus puertas al público todos los viernes y sábados no festivos entre las 20:30 y 23 horas, atendiendo a personas de lo más diversas que se encuentran atraídas de forma casual por el edificio singular, o que han conocido su existencia por otros vecinos del Concello o por la página Web de la Fundación FC3, a través de la cual es posible la realización de reservas para visitas o la solicitud de tiempos de observación para aficionados y profesionales de cualquier punto de nuestro estado.

 

Recientemente además se ha celebrado en Forcarei una reunión de representantes de las asociaciones astronómicas gallegas (imagen de la izquierda) para hacer llegar el mensaje de que el observatorio está abierto a todo el mundo y especialmente a los aficionados gallegos; no es un ente cerrado y tan sólo hay que pedir adecuadamente tiempos para conseguir observaciones, tanto presenciales como asistidas, es decir realizadas por el operador del observatorio a petición.

 

 

En proceso continuo de mejoras, se abren nuevas perspectivas que incluirán no sólo la adquisición de nuevo instrumental científico y divulgativo, si no la construcción en un futuro muy próximo de un segundo edificio polifuncional que podría contar entre otros de un planetario para la formación de escolares y público en general.

En un futuro próximo está previsto incluso la robotización completa y operación a través de Internet, tras la asignación de tiempos a los observadores solicitantes.

 

 Sorprende que en un clima complicado como el reinante en Galicia, podamos disfrutar de forma sencilla, de un telescopio con una potencia semejante, pero cuando las noches son estrelladas y transparentes queda comprobado la efectividad y espectacularidad de las tomas del cielo….al alcance de todos.

Algunas tomas desde el observatorio de Forcarei por el autor (sin apenas procesar).

Nebulosa del Cangrejo M1 en Tauro

M13 en Hércules.

M42 en Orión (3 tomas RGBx 10 minutos)

M63; La galaxia del girasol en Canes.

M64, Galaxia del Ojo Negro en Coma.

M97. Nebulosa planetaria de la Lechuza en Osa Mayor.

M101. La Galaxia del Molinete en Osa Mayor.

M106. Galaxia en Canes.

**

Publicado bajo la categoría Agrupaciones de tu provincia, Astronomía en Internet, Astronomía en la vida cotidiana, Educación Primaria, Educación Secundaria, Educación Universitaria, Enclaves astronomicos, Fotografía Astronomica, General, Instrumentación, Investigación Amateur, observación, Observatorios de tu provincia, Turismo Astronómico, Visitas

El arte en la astronomía

Saturno por Cassini

En nuestra sociedad suele existir una tendencia bastante popular a pensar que la ciencia y el arte son dos cosas diametralmente opuestas. Es cierto que existe una distancia entre ambas disciplinas, no tan acentuada como aquellos que piensan que la cultura es sólamente saber “de letras” y/o que “las ciencias” no son importantes, pero existe. Sin embargo, una vez te adentras en el mundo de la ciencia puedes encontrarte con cosas que se parecen más al arte que a la propia ciencia. En esta entrada os voy a hablar sobre algunas de las curiosidades artísticas de la astronomía, por ser quizá una de las ramas que mayores posibilidades ofrece para disfrutarla de forma visual, e incluso sonora.

La astronomía, así como la astrofísica, se basa principalmente en las observaciones realizadas por telescopios y radioantenas, ya sean con base terrestre o espacial. Debido a que nuestra atmósfera es una mala compañera que nos perturba las imágenes y nos hace invisible el cielo a ciertas longitudes de onda, lo mejor es salirnos siempre que podemos fuera de nuestro planeta para observar. Esto supone un mayor costo económico, pero se gana en potencia y nitidez en las imágenes que recibamos, lo que a la postre supone unos resultados científicos más precisos al estudiar los datos.

Otra propiedad importante de la astrofísica es que podemos observar el universo en el espectro electromagnético completo, es decir, desde las amplias ondas de radio a los energéticos rayos gamma. Desde tierra no podemos captar algunas emisiones, como bien podemos ver en la imagen inferior en la que se representa la absorción por parte de la atmósfera de diferentes tipos de radiación electromagnética. Así pues, los rayos gamma, rayos X, ultravioleta o infrarrojo no somos capaces de observarlos con un telescopio terrestre, y es necesario salirse al espacio para estudiar el universo en dichas longitudes de onda.

Absorcion de la radiación por parte de la atmósfera

Y aquí es dónde comienza a aparecer el arte en la astronomía. La gran mayoría de las astrofotografías realizadas por los telescopios espaciales están tomadas en una zona del espectro electromagnético que no es visible al ojo humano, es decir, no está en la región óptica en la que aparecen los colores. Esto quiere decir que en estas imágenes es completamente imposible que podamos ver algún color. Sin embargo en casi todas las fotografías que podemos observar en internet o los medios de comunicación sí que están a color. ¿Dónde está el truco entonces? La respuesta es muy sencilla: aplicando una simple transformación a la imagen para darla falso color.

El falso color se puede realizar con una sola tonalidad como por ejemplo hacen las cámaras de visión nocturna, en las que las imágenes son de color verde; o se puede realizar con la totalidad del espectro de colores. Este último caso es el más llamativo desde el punto de vista artístico pues siempre es más bonito ver una imagen con diferentes colores y tonalidades que una imagen monocromática. La forma de hacer esto último es sencilla e ingeniosa. Se coge la imagen obtenida por el telescopio y se asigna a la mayor longitud de onda observada el color rojo. Por otro lado, a la menor longitud de onda observada se le asigna el color azul. El resto de colores, se van dando de forma homogénea según el resto de frecuencias que haya en la imagen. Una aplicación de este método se puede ver en la siguiente fotografía de nuestro Sol tomada por el telescopio espacial SOHO de la NASA en luz ultravioleta.

El Sol en ultravioleta por el SOHO

Otra forma artística de observar y comprender el universo puede ser escuchándolo. Como ya sabréis, en el medio interestelar o interplanetario es imposible la propagación de una onda mecánica como es el sonido, pero podemos hacer una transformación para convertir la radiación electromagnética en sonido, al igual que hacemos en la Tierra con las ondas de radio. Esta conversión se puede realizar sea cual sea la longitud de onda de la radiación electromagnética, es decir no es algo único de las ondas de radio, y los sonidos resultantes pueden llegar a ser muy bonitos. Como ejemplo, os voy a dejar con los sonidos de un conjunto de 16 púlsares del cúmulo 47 Tucanae que llegan a sonar bastante armónicos. Existen muchas más “grabaciones sonoras” de púlsares y cuerpos de nuestro Sistema Solar que os invito a buscar por la red.

Así pues, tenemos que la astronomía, pese a ser una ciencia pura, muy basada en la observación y comprobación de hipótesis, tiene también un aspecto artístico que nos permite tener imágenes y fotografías que, bajo mi punto de vista, son las mayores joyas que podemos alcanzar hoy en día. Quizá no sean un cuadro de Picasso, Goya, o Van Gogh, pero las astrofotografías, en cierto modo, son pequeñas pinceladas del pasado que nos muestran de dónde venimos y, lo que es mejor, hacia dónde vamos.

Saludos ;)

Publicado bajo la categoría Educación Primaria, Educación Secundaria, Educación Universitaria, Fotografía Astronomica, General
Etiquetas: , , , , , , , , , ,

Segunda campaña de observación IACO

IACO - www.iaco.es

IACO - www.iaco.es

Ya está casi aquí la segunda campaña de observación del proyecto Iaco, un proyecto asociado al IYA para medir la terrible contaminación luminica del cielo español. Os animo desde aquí a participar, hacer una medida es tan fácil como salir a la calle y comprar las constelaciones elegidas con unas hojas, a menos estrellas mas CL. Con 5 minutos puedes contribuir a este estudio a nivel estatal coordinado por la sociedad malagueña de astrnomía. Esta segunda tanda de observaciones será del 16 al 28 de marzo entre las 20:30 y las 22:30. No tienes excusa para no hacerlo. Tienes más información en su página web.

Publicado bajo la categoría Astronomía en Internet, Contaminación Lumínica, Educación Primaria, Educación Secundaria, Educación Universitaria, General, Viviendo el IYA-AIA
Etiquetas: ,

Las orejas de Saturno

Los anillos de Saturno se observaron por primera vez en julio de 1610, hace algo menos de 400 años. El mérito fue para el italiano Galileo Galilei. Y tiene mérito en parte porque las imágenes que daba el recién inventado telescopio eran de baja calidad; y en parte también porque hacía tan sólo unos meses que Galileo había descubierto los cuatro satélites mayores de Júpiter, es decir, los tenía muy recientes.

La mutulización de Urano por Saturno. FOTO: Pintura de Giorgio Vasari y Gherardi Christofano del siglo XVI expuesta en el Palazzo Vecchio, Florencia (Italia).

"La mutulización de Urano por Saturno". FOTO: Pintura de Giorgio Vasari y Gherardi Christofano del siglo XVI expuesta en el Palazzo Vecchio, Florencia (Italia).

Galileo pensó inicialmente que las estructuras borrosas que veía eran dos satélites muy próximos a Saturno. Incluso se llegó a decir que Galileo había visto ‘dos orejas’ a Saturno. Pero cambió de opinión. Con el tesón que le era característico, Galileo observó durante un tiempo aquellas ‘orejas’ que asomaban a cada lado del planeta. En unas semanas se dio cuenta de que éstos no cambiaban de posición respecto a Saturno de una noche a la siguiente y, además, fueron desapareciendo hasta el año 1612. Entonces sucedió algo que se repetirá en 2009: los anillos quedarán orientados de tal manera que desde nuestra posición, desde la Tierra, quedan planos y, como en 1612, dejarán de verse.

A medida que Saturno gira alrededor del Sol, periódicamente sus anillos se sitúan inclinados hacia la Tierra (esto ocurre de hecho cada 14 ó 15 años) y, por lo tanto, puede parecer que han desaparecido. Debido a que los anillos son muy finos cuando se observan con pequeños telescopios -como los que usaba Galileo y sus contemporáneos- Saturno podía pensarse que pierde sus anillos.

Según se ha ido observando, esta no coincidencia de los planos entre nuestro punto de vista y la inclinación de los anillos permite a los astrónomos ver por completo el disco planetario. Es, además, una buena oportunidad para estudiar el perfil de los anillos, buscar nuevos satélites del planeta y observar los anillos menos densos que, al ponerse de canto son más visibles. También es un buen momento para contemplar el misterioso polo norte azulado del planeta. Y es que, hace pocos años, en 2005, la sonda espacial Cassini sobrevoló el hemisferio norte y descubrió que los cielos allí son de color azul celeste y sus nubes amarillentas, pero por alguna razón en latitudes más septentrionales en el norte las nubes se aclaran, dejando un cielo de color azulado similar al nuestro.

Galileo Galilei no tuvo en cuenta esta circunstancia y dejó por unos meses de observar el planeta. Tampoco contaba con el instrumental adecuado.

Una imagen de Saturno tomada por el autor del artículo en marzo de 2007.

Una imagen de Saturno tomada por el autor del artículo en marzo de 2007.

Mientras, los astrónomos de la época hacían toda serie de conjeturas acerca del origen de estas ‘orejas’. Alguna de estas explicaciones incluían la posibilidad de que Saturno tuviera como dos asas o que fueran satélites muy concentrados sólo en sendas zonas ‘traseras’ del planeta, por lo que ni siquiera proyectaban sombra alguna.

Siglos más tarde, en 1655, el astrónomo Christiaan Huygens afirmó que tales apéndices no eran sino anillos de materia dispuestos en el plano ecuatorial, es decir, orbitando el planeta. Huygens explicaba que según cuáles fueran las posiciones de Saturno y de la Tierra en sus órbitas alrededor del Sol, la inclinación del disco respecto a la Tierra variaba.

Dibujo de Saturno realizado por Galileo Galilei en 1610. Crédito: Rutherford Appleton Laboratory .Dibujo realizado por Galileo en 1612. Crédito:

Dibujos de Saturno realizados por Galileo Galilei en 1610 (arriba) y 1616 (centro) y dibujo realizado por Huygens en 1655 (abajo). Crédito: Rutherford Appleton Laboratory .

Más tarde, un par de siglos después de aquella aclaración de Huygens, Giovanni Cassini planteó la posibilidad de que estos anillos no fueran como ‘placas’ de materia orbitando. Cassini observó zonas de distinto color y, por tanto, de distinta densidad y composición de materiales en el supuesto gran anillo de Saturno. De este modo, en 1675, Giovanni Cassini dividió el anillo de Saturno en dos, estableciéndose el nombre de división de Cassini a esta zona oscura que se observa en los anillos en su honor.

Poco antes de dar comienzo el siglo XIX, el matemático Pierre-Simon Laplace añadió al estudio de Saturno la hipótesis de que los anillos estaban formados por muchos anillos delgados separados entre sí por la fuerza centrífuga generada por la rotación del planeta.

En 1857, James Clerk Maxwell demostró de forma matemática que los anillos delgados estaban formados en realidad por numerosas masas pequeñas que mantenían órbitas independientes.

En 1895 los investigadores James Keeler y William Campbell dedujeron la velocidad de las partículas en los anillos a partir de su desplazamiento Doppler, es decir, midiendo los cambios en la longitud de onda de las líneas espectrales de la luz del Sol que las partículas de los anillos reflejan hacia nosotros. Se comprobó experimentalmente que los anillos orbitan a una velocidad distinta a la de la atmósfera planetaria. Y, también, se comprobó que los anillos interiores giran a una mayor velocidad que los anillos exteriores.

Así pues, este año 2009 y, sobre todo a partir de estas fechas en las que Saturno comienza a verse bien a horas tempranas de la noche, en la Constelación de Leo, es un buen momento para recordar aquella experiencia que intrigó a Galileo y, de paso, observar con todo su esplendor el disco planetario de Saturno. Saturno perderá sus anillos el próximo día 4 de septiembre cuando se encuentren perpendiculares a nuestro punto de vista.

Saturno y la posición de sus anillos en 2007 y 2008. FOTO: www.saturndaily.com

Saturno y la posición de sus anillos en 2007 y 2008. FOTO: www.saturndaily.com

En wikipedia, enciclopedia libre, se puede leer lo siguiente acerca de la observación de Saturno: El planeta se observa a simple vista en el cielo nocturno como un punto luminoso (que no parpadea) brillante y amarillento cuyo brillo varía normalmente entre la magnitud +1 y la 0, toma aproximadamente 29 años y medio en realizar una traslación completa en su órbita con respecto a las estrellas de fondo pertenecientes al zodiaco. Con apoyo óptico, como con grandes binoculares o un telescopio, se necesita una magnificación de al menos 20x para que la mayoría de las personas puedan distinguir claramente los anillos de Saturno.

Manuel Rodríguez de Viguri. Astroingeo-Ciudad de las Estrellas
Viguri(@)ya.com; info(@)ciudaddelasestrellas.org

Publicado bajo la categoría Educación Primaria, Educación Secundaria, Experiencias de Observación, General, Geología Planetaria, Historia de la astronomía

Partiview – Un Universo digital

http://www.haydenplanetarium.org/universe/partiview/

¿A qué distancia están las estrellas? Mirando al cielo en una noche estrellada uno puede llegar a pensar que ciertamente cerca, al menos lo bastante cerca como para llegar utilizando un vehículo espacial en un tiempo razonable. Pero en cualquier libro o revista de astronomía encontraremos que las estrellas están a cientos de billones de kilómetros de distancia y sólo para llegar a la más próxima habría que aventurarse en un viaje de miles de años. Pensaremos entonces que tales viajes interestelares son posibles solamente en nuestra imaginación.

Los mapas y cartas celestes nos resultan familiares. Es habitual disponer de una carta celeste redonda y plana que representa las estrellas visibles a nuestra latitud. O puede que hayamos visto alguna esfera celeste, al estilo de un globo terráqueo, que representa las estrellas del firmamento como puntos en su superficie redonda.

Pero tanto las cartas como las esferas celestes y otros tipos de mapas estelares son representaciones planas de un mundo tridimensional. Nadie cree, o nadie debería pensar, como en la Edad Media, que todas las estrellas están a la misma distancia de nosotros y menos aún ligadas a una esfera.

Con un ordenador y programas como Partiview, y el atlas o catálogo de objetos llamado el “Universo Digital”, desarrollado por el Planetario Hayden del Museo de Historia Natural de Nueva York, financiado por la NASA, ya no tenemos que conformarnos con realizar viajes espaciales a otras estrellas sólo en nuestra imaginación.

Con Partiview podemos viajar, por ejemplo, en dirección a la familiar constelación de la Osa Mayor a una velocidad mucho mayor que la de la luz. Enseguida notaremos que la forma de la constelación cambia lentamente. Dejaremos atrás la estrella más cercana de la conocida figura del carro, después otra, y luego otra, y entonces la figura habrá perdido por completo su forma de carro. Lo que desde la Tierra nos parecía un grupo de estrellas relacionadas, ahora no es más que un conjunto de estrellas inconexas. Las constelaciones pierden todo sentido en un viaje interestelar.

Fig. 1: Mirando hacia la Osa Mayor

Fig. 1: Mirando hacia la Osa Mayor

Fig. 2: A 57 años-luz del Sol, mirando en la dirección de la Osa Mayor.

Fig. 2: A 57 años-luz del Sol, mirando en la dirección de la Osa Mayor.

Con Partiview podemos viajar hasta objetos cercanos como nuestras vecinas estrellas, o hasta el otro extremo de nuestra Galaxia, o salir de ella y contemplar nuestro Grupo Local de galaxias, o mucho más lejos, hasta los objetos más distantes y antiguos conocidos del Universo. Y en todo momento, nosotros somos los que decidimos hacia dónde dirigimos nuestra atención y en qué dirección queremos viajar.

Podemos contemplar la Vía Láctea o Camino de Santiago en dirección al centro de la Galaxia, la espectacular región de Sagitario visible en verano. Y podemos verlo con otros ojos, los que nos brindan telescopios en tierra y en órbita, ojos sensibles no a la luz visible sino al infrarrojo, rayos X y gamma, o a las ondas de radio, que son así capaces de explorar las nebulosas donde se forman nuevas estrellas, regiones de hidrógeno ionizado o de polvo interestelar, así como púlsares y remanentes de supernovas, los restos de estrellas que dejaron de brillar hace cientos o miles de años.

También podemos constatar que vivimos en el disco de nuestra Galaxia, y hacia las afueras, notando cómo se distribuyen los cúmulos dispersos de estrellas y asociaciones estelares jóvenes, los cúmulos globulares, las nebulosas planetarias o los restos de supernovas.

Fig. 3: Una representación de La Vía Láctea, nuestra galaxia, y señalada mediante ejes de referencia, la posición de nuestro Sol.

Fig. 3: Una representación de La Vía Láctea, nuestra galaxia, y señalada mediante ejes de referencia, la posición de nuestro Sol.

El Universo Digital ha sido posible sólo tras siglos de ciencia y observación astronómica (esto ha proporcionado el conocimiento), y el desarrollo de las nuevas tecnologías (esto ha hecho posible que podamos disfrutarlo en nuestro ordenador personal). Cientos de miles de objetos se han incorporado en este atlas, que en su conjunto nos hace más fácil comprender el Universo en toda su magnitud.

La base del Universo Digital está en la representación de los objetos en la dirección precisa (el equivalente a la latitud y longitud) y a la distancia correcta. Pero esa distancia no ha sido nunca algo fácil de conocer. La primera estimación relativamente precisa de la distancia de una estrella se hizo hace sólo algo más de un siglo y medio. Hasta entonces poco se podía decir de la distancia de las estrellas, excepto que realmente es enorme.

Las primeras distancias a estrellas se midieron mediante el llamado paralaje anual de la Tierra. Es un efecto de perspectiva, que hace que las estrellas cercanas nos parezcan que están situadas en cierta posición respecto a las estrellas mucho más lejanas, pero en otra posición ligeramente movida seis meses después, cuando la Tierra está en el otro extremo de su órbita en torno al Sol.

Sin embargo el paralaje sirve sólo para conocer la distancia de las estrellas más cercanas, hasta unos 500 años-luz, una distancia enorme que sin embargo representa tan sólo una minúscula fracción del tamaño de la Galaxia. La mayoría de los planetas extrasolares descubiertos no distan más de unos 100 años-luz de nosotros.

Existe una clase de estrellas cuyo brillo cambia periódicamente, las Cefeidas, estrellas gigantes y frías cuya luminosidad está relacionada con el ritmo al que varía. El descubrimiento de este fenómeno permitió establecer una forma de medir distancias a estrellas mucho más lejanas que con el método del paralaje, incluso situadas en otras galaxias, hasta unos 50 millones de años-luz. A modo de referencia, la galaxia de Andrómeda, que pertenece al Grupo Local de Galaxias, en el que están la Vía Láctea y las Nubes de Magallanes, se encuentra a 2 millones de años-luz.

Pero aún es posible determinar distancias mucho mayores mediante el desplazamiento al rojo de la luz que emiten las galaxias y los quásares. El Universo se expande desde que comenzó con el Big Bang hace unos 13.700 millones de años. Debido a la expansión las galaxias parecen alejarse de nosotros, tanto más rápido cuanto más lejos están (en realidad se trata de una ilusión: el espacio es el que se estira, y se lleva a los cúmulos de galaxias con él). Al mismo tiempo, por alejarse, su luz nos parece algo más roja, tanto más roja cuanto más rápido se alejan. Por tanto cuanto más enrojecida es su luz, más lejos están de nosotros. Así es como conocemos la distancia a la que se encuentran los objetos más lejanos del universo, desde cientos a varios miles de millones de años luz. Cuando se visualizan todos estos objetos en Partiview salta a la vista la fascinante y sorprendente estructura “esponjosa” (con filamentos, nudos y espacios vacíos) de la distribución de los cúmulos y supercúmulos de galaxias.

Fig. 4: Distribución de las galaxias medida por el 2dF Survey.

Fig. 4: Distribución de las galaxias medida por el 2dF Survey.

Fig. 5: Distribución de las galaxias más lejanas y los quásares medida por el Sloan Digital Sky Survey (SDSS). De fondo, mapa de la micro-fluctuación de temperatura de la radiación cósmica de fondo, medido por la sonda WMAP.

Fig. 5: Distribución de las galaxias más lejanas y los quásares medida por el Sloan Digital Sky Survey (SDSS). De fondo, mapa de la micro-fluctuación de temperatura de la radiación cósmica de fondo, medido por la sonda WMAP.

Muchos zaragozanos y aragoneses hemos podido asistir a sesiones de proyección en Planetarios, siempre en algún viaje o excursión, ya que en esta ciudad de la Expo2008, Zaragoza, carecemos todavía de uno. Otras ciudades a priori más modestas han entendido mucho antes que la nuestra lo importante y conveniente que es acercar la Ciencia al ciudadano y han sabido dotarse de Museos de la Ciencia y similares. En estos momentos todavía tres comunidades autónomas españolas carecen de un Museo de Ciencia: Aragón, Baleares y Extremadura.

Los planetarios han evolucionado desde que nacieron hace varias décadas. En sus inicios proyectaban (y la mayoría de planetarios actuales lo siguen haciendo) las estrellas y planetas en una cúpula mediante mecanismos ópticos móviles, por otra parte impresionantes, para simular el movimiento aparente del cielo y de los planetas a lo largo del día y el año. Después se combinaron con proyecciones audiovisuales basadas en diapositivas o más tarde vídeo.

Pero en la era de los computadores y los gráficos generados por ordenador, los planetarios se han sabido aprovechar de las posibilidades que ofrecen. Así es como han nacido los planetarios digitales, que proyectan sobre la cúpula escenas generadas por ordenador que pueden cambiar para causar la impresión no sólo de que el cielo gira sino de estar viajando entre las estrellas.

El Planetario Hayden, pionero de los planetarios digitales, desarrolló el “Universo Digital” para Partiview a modo de “hermano menor” de su nuevo sistema de proyección digital, para ser usado en un ordenador personal, y lo pone a libre disposición de quien lo quiera. Como dicen sus creadores, “el universo observable es inmenso, más allá de cualquier experiencia ordinaria, pero no más allá de la capacidad del ser humano para representar, visualizar y compartir. Ya nos damos cuenta de su inmensidad cuando intentamos visualizarlo y nos desplazamos entre las estrellas más cercanas. Conforme nos alejamos, concebimos un hogar mucho más grande de lo que jamás imaginamos”.

Publicado bajo la categoría Astronomía en Internet, Educación Primaria, Educación Secundaria, Educación Universitaria, General
Etiquetas: , , ,

Observación lunar en Managua

57) Managua, Nicaragua

07/11/08 (GTM-01:57) Managua, Nicaragua

La noche del 7 de noviembre de 2008 entre las 19:00 y 21:00 hora local, me dispuse a una rápida observación lunar. Con la esperanza remota de encontrarme con el impacto de alguna taurida tardía, pero era mucho pedir. En cambio mi sorpresa fue que se acercaron a mi y a mi faena astronómica un grupo de niños, asombrados de ver el extraño instrumento que apuntaba hacia el cielo y el loco personaje que lo manipulaba. Con todo el gusto les explique qué hacía y los invite a observar y por supuesto a responder sus curiosas pero fascinantes preguntas.

Dentro de ellas la que más llamo mi atención fue ¡si había gente habitando la luna y cómo eran!. Una pregunta difícil de contestar a niños muy pequeños. Me aventuré, sin el temor de frustrarlos, a contadles la mitad de la pelicular (historias antiguas de selenitas y esas cosas); es decir, sin hacer reflexión sobre la futura estancia transitoria de seres humanos en La Luna como puente o puerto hacia otros mundos, en donde ustedes, sus hijos y generaciones llegarán a explorar y habitar. Finalmente y dado que tenían que irse a la cama, el compromiso mio fue to be continue…

Algunas fotos de ese momento especial.

Niños haciendo cola para observar La Luna por primera vez!!!

Niños haciendo cola para observar La Luna por primera vez!!!07/11/08 (GTM-01:57) Managua, Nicaragua

Saludos y cielos despejados!

Viva el IYA 2009!!!!

Zubenelgenubi

Publicado bajo la categoría Educación Primaria, Luna, Viviendo el IYA-AIA
Arriba | Entradas (RSS) | Comentarios (RSS)